Devoir Libre Obligatoire n°2 MATHEMATIQUES Algèbre PSI

à rendre le vendredi 1er Octobre 2021 à Mme ZAROUF

Exercice I

Soit $n \in \mathbb{N}$.

On note $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à n,

et $B = \{1, X, X^2, ..., X^n\}$ sa base canonique.

Etant donnée une famille de (n+1) réels distincts $a_0 < a_1 < a_2 < ... < a_n$, on lui associe

les polynômes $L_0, L_1, L_2...L_n$ de $\mathbb{R}_n[X]$ tels que :

$$\forall i \in \{0, 1, 2, ...n\}, \forall j \in \{0, 1, 2, ...n\} \setminus \{i\}, \ L_i(a_j) = 0 \text{ et } L_i(a_i) = 1$$

On note enfin A la matrice carrée dont les vecteurs colonnes sont les coordonnées dans la base B des vecteurs $L_0, L_1, L_2, ... L_n$.

- 1. On prend n = 2, $a_0 = 0$, $a_1 = 1$, $a_2 = 2$.
 - (a) Donner L_0, L_1, L_2

Montrer que $\{L_0, L_1, L_2\}$ est une base de $\mathcal{R}_2[X]$.

Montrer que, pour polynôme P de $\mathbb{R}_2[X]$, on a $P = P(0)L_0 + P(1)L_1 + P(2)L_2$.

- (b) Former la matrice de changement de base de $B = \{1, X, X^2\}$ à $B' = \{L_0, L_1, L_2\}$. Justifier que A est cette matrice.
- (c) Le but de cette question est de déterminer les polynômes P de $\mathbb{R}_2[X]$ tels que :

$$P(X) = P(0) + P(1)X + P(2)X^{2}$$

Soit P un tel polynôme.

- i. Donner la matrice colonne T donnant les coordonnées de P dans B.
- ii. Donner la matrice colonne T' donnant les coordonnées de P dans B'.
- iii. Chercher dans votre cours de PCSI la relation matricielle qui existe entre T, T' et A.
- iv. En déduire l'ensemble des solutions S des polynômes P de $\mathbb{R}_2[X]$ vérifiant $P(X) = P(0) + P(1)X + P(2)X^2$.
- v. Montrer que S est un sev de $\mathbb{R}_2[X]$ de dimension finie. En déterminer une base.
- 2. Retour au cas général
 - (a) Montrer que $B' = \{L_0, L_1, L_2...L_n\}$ est une base de $\mathbb{R}_n[X]$.

Indiquer les coordonnées dans la base B' d'un polynôme P quelconque de $\mathbb{R}_n[X]$.

- (b) Quel est le nombre de lignes et de colonnes de A?
 - Montrer que A est inversible.
 - Calculer son inverse. Comment s'appelle cette matrice? Donner son déterminant.
- (c) Montrer que $\sum_{i=0}^{n} L_i = 1$.

En déduire que la somme des éléments de la première ligne de A est égale à 1, et que la somme des éléments de toute autre ligne de A est nulle.

Exercice II

Soit $n \in \mathbb{N}^*$. Soit $(E_{ij})_{1 \leq i,j \leq n}$ la base des matrices élémentaires de $\mathscr{M}_n(\mathbb{K})$.

[1, n] désigne l'intervalle des entiers naturels compris entre 1 et n.

- 1. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Calculer AE_{ij} et $E_{i,j}A$ pour $(i,j) \in [1,n]^2$.
- 2. En déduire $E_{ij}E_{kl}$ pour $(i, j, k, l) \in [1, n]^4$.
- 3. Soit $f: \mathcal{M}_n(\mathbb{K}) \longmapsto \mathbb{K}$ linéaire vérifiant : $\forall (A,B) \in (\mathcal{M}_n(\mathbb{K}))^2, f(AB) = f(BA)$.
 - (a) Montrer que l'application trace vérifie cette condition. Savoir refaire la démonstration rigoureuse du cours sans regarder le cours!!

Soit $f: \mathcal{M}_n(\mathbb{K}) \longmapsto \mathbb{K}$ linéaire vérifiant la condition de l'énoncé.

- (b) Montrer que : $\forall i \in [1, n], f(E_{ii}) = f(E_{11}).$
- (c) Montrer que : $\forall (i,j) \in [1,n]^2, i \neq j \Longrightarrow f(E_{ij}) = 0.$
- (d) En déduire que f est colinéaire à la trace. (c-a-d qu'il existe $\lambda \in \mathbb{K}, \forall A \in \mathcal{M}_n(\mathbb{K}), f(A) = \lambda tr(A)$).