

PSI MATHEMATIQUES

Programme de Colle semaine $n^{\circ}9$ du 24 Novembre 2025

- Une colle sera du type d'un oral de **CCINP**, à savoir deux exercices :
 - Le premier exercice doit contenir :
 - Une question de cours (un énoncé d'une définition, d'une propriété ou d'un théorème) ou une démonstration qui sera **signalée en gras** dans le programme de colle.
 - Deux niveaux de démonstration : niveau (*) pour les groupes 2,3 et 5.
 - Une application très directe du cours :
 - Un deuxième exercice portant sur une notion du programme de colle différente du premier exercice.
- Comment préparer une colle ? Il est indispensable de connaître son cours, savoir refaire les exemples traités en cours et les exercices mentionnés dans le programme de colle.
- Notation : Dès lors qu'il s'avère que le cours n'est pas su, la note sera obligatoirement inférieure à 8. Ensuite, les points seront rajoutés suivant votre autonomie face aux exercices.
- Après la colle : Avant le jeudi de la semaine suivant votre colle, vous devez me rendre votre cahier de colle où vous rédigerez au moins un des deux exercices

1 Séries Numériques

Savoirs attendus:

- 1. Connaître les notations d'une série, d'une Nième somme partielle d'une série, de la somme d'une série.
- 2. la définition d'une série convergente (resp : divergente) au moyen de la suite des sommes partielles et définition de la somme d'une série convergente.
- 3. Cas des séries géométriques et de la série harmonique alternée.
- 4. Séries exponentielles réelles et séries de Riemann.
- 5. Savoir étudier la nature d'une série à termes positifs en utilisant l'un des critères suivants :
 - (a) Majoration de la suite des sommes partielles.
 - (b) Théorème de comparaison.
 - (c) Critère du o() et O(); le coup du α en sachant revenir au critère du o().
 - (d) Critère de l'équivalent.
- 6. Les séries de Bertrand : La nature d'une série de Bertrand doit être rejustifiée à chaque fois (on utilise soit le théorème de comparaison, soit le critère du o(), soit la comparaison avec une intégrale).
- 7. Relation entre séries et suites :
 - Pour étudier la série $\sum u_n$, on peut étudier la suite des sommes partielles $(S_n)_n$ et parfois transformer celles-ci grâce à un télescopage, qui permet une simplification de S_n et d'aboutir à sa convergence ou divergence et calcul de la somme de la série en cas de convergence.
 - Pour étudier une suite $(u_n)_n$, il est parfois utile d'étudier la série $\sum (u_{n+1} u_n)$. La suite $(u_n)_n$ correspond à une constante près à la suite des sommes partielles de la série $\sum (u_{n+1} u_n)$.
- 8. Absolue Convergence : connaître la définition, les propriétés : $cv \Leftarrow abs cv$ et la généralisation des critères O et O.
- 9. Technique de comparaison série et intégrale : Dans le programme, il est écrit : Les étudiants doivent savoir utiliser la comparaison série-intégrale pour établir des convergences et divergences de séries, estimer des sommes partielles de séries divergentes ou des restes de séries convergentes dans le cas de fonction monotone.
- 10. Règle de D'Alembert.
- 11. Produit de Cauchy : connaître la définition du terme général du produit de Cauchy de deux séries et la propriété concernant le produit de somme de séries abs cv.
- 12. Application aux séries exponentielles. Savoir démontrer que $e^{z_1+z_2}=e^{z_1}e^{z_2}$
- 13. Séries alternées : apprendre les méthodes pour reconnaître une séries alternée, savoir appliquer le CSSA et le signe et la majoration du reste, savoir utiliser le développement limité quand $n \to +\infty$ du terme général lorsqu'il est difficile de montrer la décroissance de $(|u_n|)_n$ ou que $u_n = (-1)^n a_n$ et a_n contient du $(-1)^n$.
- 14. Formule de Stirling : connaître bien sûr la formule.

Suite page suivante.....

2 Exercices à savoir refaire

Exercice 1. 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge où $u_n = \sum_{k=1}^n \frac{1}{k} - \ln(n)$.

- 2. En déduire qu'il existe $\gamma \in \mathbb{R}$ tel que $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + \sum_{n \to +\infty}^{o} (1)$.
- 3. En déduire un équivalent simple de $\sum_{k=1}^{n} \frac{1}{k}$.

Exercice 2. Pour $\alpha > 1$, donner un équivalent de $R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$ quand n tend vers $+\infty$.

Exercice 3. Pour $x \in]-1,1[$,écrire $\frac{1}{(1-x)^2}$ comme somme d'une série.

Exercice 4. 1. Soit $\alpha \in \mathbb{R}$, donner la nature de $\sum_{n\geq 1} \frac{(-1)^n}{n^{\alpha}}$.

- 2. Nature de $\sum_{n>1} \frac{(-1)^n}{n + (-1)^{n+1}\sqrt{n}}$.
- 3. Soit $\alpha \in \mathbb{R}$, montrer que $\sum_{n \geq 1} \ln \left(1 + \frac{(-1)^n}{n^{\alpha}} \right)$ est une série alternée et donner sa nature.

Exercice 5. Les Intégrales de Wallis : Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$. On a alors

- 1. $(I_n)_n$ est décroissante.
- 2. $\forall n, I_{n+2} = \frac{n+1}{n+2}I_n$.
- 3. $\forall n, I_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \frac{\pi}{2}$. (On a appris la technique de Wallis)
- 4. $\forall n, (n+1)I_{n+1}I_n = \frac{\pi}{2}$.
- 5. $I_n^2 \sim \frac{\pi}{n \to +\infty}$

Exercice 6. Pour $x \in \mathbb{R}^+_*$, donner la nature de $\sum_{n \geq 0} \binom{2n}{n} x^n$.