Sujet $n^{\circ}2$

L'usage de la calculatrice et de tout dispositif électronique est interdit.

Ce sujet est issu d'une épreuve de 3 heures.

Espaces vectoriels d'endomorphismes nilpotents

Dans tout le sujet on considère des \mathbb{R} -espaces vectoriels de dimension finie. Soit E un tel espace vectoriel et u un endomorphisme de E. On dit que u est **nilpotent** lorsqu'il existe un entier $p \geq 0$ tel que $u^p = 0$; le plus petit de ces entiers est alors noté v(u) et appelé **nilindice** de u, et l'on notera que $u^k = 0$ pour tout entier $k \geq v(u)$. On rappelle que $u^0 = \mathrm{id}_E$. L'ensemble des endomorphismes nilpotents de E est noté $\mathcal{N}(E)$: on prendra garde qu'il ne s'agit a priori pas d'un sous-espace vectoriel de $\mathcal{L}(E)$.

Un sous-espace vectoriel \mathcal{V} de $\mathcal{L}(E)$ est dit nilpotent lorsque tous ses éléments sont nilpotents, autrement dit lorsque $\mathcal{V} \subset \mathcal{L}(E)$.

Une matrice triangulaire supérieure est dite **stricte** lorsque tous ses coefficients diagonaux sont nuls. On note $T_n^{++}(\mathbb{R})$ l'ensemble des matrices triangulaires supérieures strictes de $\mathcal{M}_n(\mathbb{R})$. On admet qu'il s'agit d'un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ de dimension $\frac{n(n-1)}{2}$.

Dans un sujet antérieur du concours (PSI Maths II 2016), le résultat suivant a été établi :

Théorème A.

Soit E un \mathbb{R} -espace vectoriel de dimension n > 0, et \mathcal{V} un sous-espace vectoriel nilpotent de $\mathcal{L}(E)$. Alors, $\dim(\mathcal{V}) \leq \frac{n(n-1)}{2}$.

Le théorème A est considéré comme acquis. L'objectif du présent sujet est de déterminer les sous-espaces vectoriels nilpotents de $\mathcal{L}(E)$ dont la dimension est égale à $\frac{n(n-1)}{2}$. Plus précisément on se propose d'établir le résultat suivant (Gerstenhaber, 1958) :

Théorème B.

Soit E un \mathbb{R} -espace vectoriel de dimension n > 0, et \mathcal{V} un sous-espace vectoriel nilpotent de $\mathcal{L}(E)$. Il existe une base de E dans laquelle tout élément de \mathcal{V} est représenté par une matrice triangulaire supérieure stricte.

Les trois parties du sujet sont largement indépendantes les unes des autres. La partie I est constituée de généralités sur les endomorphismes nilpotents. Dans la partie II, on met en évidence un mode de représentation des endomorphismes de rang 1 d'un espace euclidien. Dans la partie III, on établit deux résultats généraux sur les sous-espaces vectoriels nilpotents : une identité sur les traces (lemme \mathbf{C}), et une condition suffisante pour que les éléments d'un sous-espace nilpotent non nul possèdent un vecteur propre commun (lemme \mathbf{D}). Dans l'ultime partie IV, les résultats des parties précédentes sont combinés pour établir le théorème \mathbf{B} par récurrence sur la dimension de l'espace E.

I. Généralités sur les endomorphismes nilpotents

Dans toute cette partie, on fixe un espace vectoriel réel E de dimension n > 0. Soit $u \in \mathcal{N}(E)$. On choisit une matrice carré M représentant l'endomorphisme u.

On admet que M est semblable à une matrice complexe triangulaire supérieure dont les coefficients diagonaux sont nuls.

1. Démontrer que $\operatorname{tr}(u^k) = 0$ pour $k \in \mathbb{N}^*$.

On fixe une base $\mathcal{B} = (e_1, \dots, e_n)$ de E. On note $\mathcal{N}_{\mathcal{B}}$ l'ensemble des endomorphismes de E dont la matrice dans \mathcal{B} est triangulaire supérieure stricte.

- 2. Justifier que $\mathcal{N}_{\mathcal{B}}$ est un sous-espace vectoriel de $\mathcal{L}(E)$ de dimension $\frac{n(n-1)}{2}$ et mettre en évidence dans $\mathcal{N}_{\mathcal{B}}$ un élément nilpotent de nilindice n.
 - On pourra introduire l'endomorphisme u de E défini par $u(e_i) = e_{i-1}$ pour tout $i \in [[2, n]]$, et $u(e_1) = 0$.
- 3. Soit $u \in \mathcal{L}(E)$. On se donne deux vecteurs x et y de E, ainsi que deux entiers $p \ge q \ge 1$ tels que $u^p(x) = u^q(y) = 0$, $u^{p-1}(x) \ne 0$ et $u^{q-1}(y) \ne 0$. Montrer que la famille $(x, u(x), \dots, u^{p-1}(x))$ est libre, et que si $(u^{p-1}(x), u^{q-1}(y))$ est libre alors $(x, u(x), \dots, u^{p-1}(x), y, u(y), \dots, u^{q-1}(y))$ est libre.
- 4. Soit $u \in \mathcal{N}(E)$ de nilindice p. Déduire de la question précédente que $p \leq n$ et que si $p \geq n-1$ et $p \geq 2$ alors $\operatorname{Im} u^{p-1} = \operatorname{Im} u \cap \ker u$ et $\operatorname{Im} u^{p-1}$ est de dimension 1.

II. Endomorphismes de rang 1 d'un espace euclidien

On considère ici un espace vectoriel euclidien (E,(-|-)). Lorsque a désigne un vecteur de E, on note

$$\varphi_a: \begin{cases} E & \to & \mathbb{R} \\ x & \mapsto & (a|x). \end{cases}$$

5. Calculer la dimension de $\mathcal{L}(E,\mathbb{R})$ en fonction de celle de E. Montrer que $a\mapsto \varphi_a$ définit un isomorphisme de E sur $\mathcal{L}(E,\mathbb{R})$.

Étant donné $a \in E$ et $x \in E$ on notera désormais $a \otimes x$ l'application de E dans lui même définie par :

$$\forall z \in E, (a \otimes x)(z) = (a|z).x$$

- 6. On fixe $x \in E \setminus \{0\}$. Montrer que l'application $a \in E \mapsto a \otimes x$ constitue une bijection de E sur $\{u \in \mathcal{L}(E) : \operatorname{Im} u \subset \operatorname{Vect}(x)\}$.
- 7. Soit $a \in E$ et $x \in E \setminus \{0\}$. Montrer que $\operatorname{tr}(a \otimes x) = (a|x)$.

 Indication: Pour $a \neq 0$, on pourra prendre une base orthonormale de E dont le premier terme est $\frac{a}{|a|}$

III. Deux lemmes

On considère ici un espace euclidien (E, (-|-)) de dimension n > 0. On rappelle que l'on a démontré à la question 4 que le nilindice d'un élément de $\mathcal{N}(E)$ et toujours inférieur ou égal à n. Soit \mathcal{V} un sous-espace vectoriel nilpotent de $\mathcal{L}(E)$ contenant un élément non nul. On note

$$p := \max_{u \in \mathcal{V}} v(u)$$

appelé nilindice générique de \mathcal{V} . On a donc $p \geq 2$.

On introduit le sous-ensemble \mathcal{V}^* formé des vecteurs appartenant à au moins un des ensembles $\operatorname{Im} u^{p-1}$ pour u dans \mathcal{V} ; on introduit de plus le sous-espace vectoriel engendré

$$\mathcal{K}(\mathcal{V}) := \operatorname{Vect}(\mathcal{V}^*).$$

Enfin, étant donné $x \in E$, on pose

$$\mathcal{V}x := \{ v(x) \mid v \in \mathcal{V} \}.$$

L'objectif de cette partie est d'établir les deux résultats suivants :

Lemme C. Soit u et v dans \mathcal{V} . Alors $\operatorname{tr}(u^k v) = 0$ pour tout entier naturel k.

Lemme D. Soit $x \in \mathcal{V}^* \setminus \{0\}$. Si $\mathcal{K}(\mathcal{V}) \subset \text{Vect}(x) + \mathcal{V}x$, alors v(x) = 0 pour tout $v \in \mathcal{V}$.

Dans les questions 8 à 11, on se donne deux éléments arbitraires u et v de \mathcal{V} .

8. Soit $k \in \mathbb{N}^*$. Montrer qu'il existe une unique famille $(f_0^{(k)}, \dots, f_k^{(k)})$ d'endomorphismes de E telle que

$$\forall t \in \mathbb{R}, (u+tv)^k = \sum_{i=0}^k t f_i^{(k)}.$$

Montrer en particulier que $f_0^{(k)}=u^k$ et $f_1^{(k)}=\sum_{i=0}^{k-1}u^ivu^{k-1-i}$.

Pour l'unicité, on pourra utiliser une représentation matricielle.

- 9. À l'aide de la question précédente, montrer que $\sum_{i=0}^{p-1} u^i v u^{p-1-i} = 0$.
- 10. Étant donné $k \in \mathbb{N}$, donner une expression simplifiée de $\operatorname{tr}(f_1^{(k+1)})$, et en déduire le validité du lemme \mathbf{C} .
- 11. Soit $y \in E$. En considérant, pour un $a \in \mathcal{K}(\mathcal{V})^{\perp}$ quelconque, la fonction $t \in \mathbb{R} \mapsto (a|(u+tv)^{p-1}(y))$, démontrer que $f_1^{(p-1)}(y) \in \mathcal{K}(\mathcal{V})$. À l'aide d'une relation entre $f_1^{(p-1)}(y)$ et et $v(u^{p-1}(y))$, en déduire que $v(x) \in u(\mathcal{K}(\mathcal{V}))$ pour tout $x \in \operatorname{Im} u^{p-1}$.
- 12. Soit $x \in \mathcal{V}^* \setminus \{0\}$ tel que $\mathcal{K}(\mathcal{V}) \subset \operatorname{Vect}(x) + \mathcal{V}x$. On choisit $u \in \mathcal{V}$ tel que $x \in \operatorname{Im} u^{p-1}$. Étant donné $y \in K(\mathcal{V})$, montrer que pour tout $k \in \mathbb{N}$ il existe $y_k \in \mathcal{K}(\mathcal{V})$ et $\lambda_k \in \mathbb{R}$ tels que $y = \lambda_k x + u^k(y_k)$. En déduire que $\mathcal{K}(\mathcal{V}) \subset \operatorname{Vect}(x)$ puis que v(x) = 0 pour tout $v \in \mathcal{V}$.

IV. Démonstration du théorème B

Dans cette ultime partie, nous démontrons le théorème **B** par récurrence sur l'entier n. Le cas n=1 est immédiat et nous le considérerons comme acquis. On se donne donc un entier naturel $n \geq 2$ et on suppose que pour tout espace vectoriel réel E' de dimension n-1 et tout sous-espace vectoriel nilpotent \mathcal{V}' de $\mathcal{L}(E')$ de dimension $\frac{(n-1)(n-2)}{2}$, il existe une base de E' dans laquelle tout élément de \mathcal{V}' est représenté par une matrice triangulaire supérieure stricte.

On fixe un espace vectoriel réel E de dimension n, ainsi qu'un sous-espace vectoriel nilpotent \mathcal{V} de $\mathcal{L}(E)$ de dimension $\frac{n(n-1)}{2}$. On munit E d'un produit scalaire (-|-|), ce qui en fait un espace euclidien.

Ón considère, dans un premier temps, un vecteur arbitraire x de $E \setminus \{0\}$. On pose

$$H:=\mathrm{Vect}(x)^{\perp},\quad \mathcal{V}x:=\{v(x)\,|\,v\in\mathcal{V}\}\quad \text{et}\quad \mathcal{W}:=\{v\in\mathcal{V}:v(x)=0\}.$$

On note π la projection orthogonale de E sur H. Pour $u \in \mathcal{W}$, on note \overline{u} l'endomorphisme de H défini par

$$\forall z \in H, \, \overline{u}(z) = \pi(u(z)).$$

On considère enfin les ensembles

$$\overline{\mathcal{V}} := \{ \overline{u} \mid u \in \mathcal{W} \} \quad \text{et} \quad Z := \{ u \in \mathcal{W} : \overline{u} = 0 \}.$$

- 13. Montrer que $\mathcal{V}x, \mathcal{W}, \overline{\mathcal{V}}$ et Z sont des sous-espaces vectoriels respectifs de $E, \mathcal{V}, \mathcal{L}(H)$ et \mathcal{V} .
- 14. Montrer que que

$$\dim(\mathcal{V}) = \dim(\mathcal{V}x) + \dim(Z) + \dim\overline{\mathcal{V}}.$$

15. Montrer qu'il existe un sous-espace vectoriel L de E tel que

$$Z = \{a \otimes x \mid a \in L\}$$
 et $\dim L = \dim Z$.

et montrer qu'alors $x \in L^{\perp}$.

- 16. En considérant u et $a \otimes x$ pour $u \in \mathcal{V}$ et $a \in L$, déduire du lemme \mathbf{C} que $\mathcal{V}x \subset L^{\perp}$, et que plus généralement $u^k(x) \in L^{\perp}$ pour tout $k \in \mathbb{N}$ et tout $u \in \mathcal{V}$.
- 17. Justifier que $\lambda.x \notin \mathcal{V}x$ pour tout $\lambda \in \mathbb{R}^*$, et déduire alors des deux questions précédentes que

$$\dim \mathcal{V}x + \dim L \le n - 1.$$

- 18. Soit $u \in \mathcal{W}$. Montrer que $(\overline{u})^k(z) = \pi(u^k(z))$ pour tout $k \in \mathbb{N}$ et tout $z \in H$. En déduire que \overline{V} est un sous-espace vectoriel nilpotent de $\mathcal{L}(H)$.
- 19. Déduire des questions précédentes et du théorème A que

$$\dim \overline{\mathcal{V}} = \frac{(n-1)(n-2)}{2}, \quad \dim(\operatorname{Vect}(x) \oplus \mathcal{V}x) + \dim(L) = n.$$

et

$$L^{\perp} = \operatorname{Vect}(x) \oplus \mathcal{V}x.$$

En déduire que $\operatorname{Vect}(x) \oplus \mathcal{V}x$ contient $v^k(x)$ pour tout $v \in \mathcal{V}$ et tout $k \in \mathbb{N}$.

20. En appliquant, entre autres, l'hypothèse de récurrence et la question 19, montrer que le nilindice générique de \mathcal{V} est supérieur ou égal à n-1, et que si en outre $\mathcal{V}x=\{0\}$ alors il existe une base de E dans laquelle tout élément de \mathcal{V} est représenté par une matrice triangulaire supérieure stricte.

Compte-tenu du résultat de la question 20, il ne nous reste plus qu'à établir que l'on peut choisir le vecteur x de telle sorte que $\mathcal{V}x = \{0\}$.

On choisit x dans $\mathcal{V}^* \setminus \{0\}$ (l'ensemble \mathcal{V}^* a été défini dans la partie III). On note p le nilindice gnérique de \mathcal{V} , et l'on fixe $u \in \mathcal{V}$ tel que $x \in \operatorname{Im} u^{p-1}$. On rappelle que $p \geq n-1$ d'après la question 20.

- 21. Soit $v \in \mathcal{V}$ tel que $v(x) \neq 0$. Montrer que $\operatorname{Im} v^{p-1} \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$. On pourra utiliser les résultats des questions 4 et 19.
- 22. On suppose qu'il existe $v_0 \in \mathcal{V}$ tel que $v_0(x) \neq 0$. Soit $v \in \mathcal{V}$. En considérant $v + tv_0$ pour t réel, montrer que $\operatorname{Im} v^{p-1} \subset \operatorname{Vect}(x) \oplus \mathcal{V}x$.

On pourra s'inspirer de la méthode de la question 11.

23. Conclure.

FIN DU PROBLÈME