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— L’usage de la calculatrice ou de tout dispositif électronique ou document est interdit.
— L’énoncé de cette épreuve comporte 3 pages de texte : un exercice et deux problèmes indépendants.
— Le candidat est prié de numéroter ses copies.
— Si, au cours de l’épreuve, un candidat repère ce qui lui semble être une erreur d’énoncé, il le signale sur sa copie et poursuit sa

composition en expliquant les raisons des initiatives qu’il est amené à prendre.
— Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Exercice

On pose A =

1 5 3
1 0 0
0 1 0


1. A est-elle diagonalisable ?

2. Montrer que A est semblable à T =

3 0 0
0 −1 1
0 0 −1


3. Montrer que T = D +N où D est une matrice diagonale et N une matrice nilpotente et ND = DN .
4. En déduire Tn.
5. Justifier sans les calculer que les coefficients de An sont de la forme α3n + (−1)n(β + γn) où (α, β, γ) ∈ R3.
6. On s’intéresse aux suites réelles (un)n∈N définies par : ∀n ∈ N, un+3 = un+2 + 5un+1 + 3un.

(a) On pose : ∀n ∈ N, Xn =

un+2

un+1

un

.

Justifier que Xn+1 = AXn.
(b) En déduire l’expression de un. On pourra juste donner la forme et indiquer seulement comment déterminer de manière précise

les paramètres dont un dépend.

Problème 1
Présentation générale

On rappelle le théorème de la division euclidienne pour les polynômes : si U ∈ C[X] et V ∈ C[X] sont deux polynômes avec V 6= 0, alors il
existe un unique couple (Q,R) ∈ C[X]2 tel que :

U = V Q+R avec (R = 0 ou deg(R) < deg(V )) .

Les polynômes Q et R sont respectivement appelés le quotient et le reste dans la division euclidienne du polynôme U par V .
Dans cet exercice, on se donne un entier n ∈ N∗ et un couple (A,B) ∈ Cn[X] × C[X] tel que deg(B) = n + 1. On considère également
l’application ϕ définie sur Cn[X] qui à un polynôme P ∈ Cn[X] associe le reste dans la division euclidienne de AP par B.
Par exemple, si on suppose que l’on a :

n = 2, A = X2, B = X3 −X, P = X2 +X + 1,

alors, en effectuant la division euclidienne de AP par B, on obtient :

AP = X4 +X3 +X2 = BQ+R avec Q = X + 1 et R = 2X2 +X ,

donc on a ϕ(P ) = 2X2 +X.

Partie I - Généralités sur l’application ϕ

Dans cette partie, on démontre que l’application ϕ est un endomorphisme de Cn[X].
1. Justifier que pour tout polynôme P ∈ Cn[X], on a ϕ(P ) ∈ Cn[X].

On considère deux polynômes P1 ∈ Cn[X] et P2 ∈ Cn[X]. Par le théorème de la division euclidienne rappelé dans la présentation,
il existe (Q1, R1) ∈ C[X]× Cn[X] et (Q2, R2) ∈ C[X]× Cn[X] tels que :

AP1 = BQ1 +R1 et AP2 = BQ2 +R2 .

2. Soit λ ∈ C. Exprimer le quotient et le reste dans la division euclidienne de A(P1 + λP2) par B en fonction de λ et des polynômes
Q1, Q2, R1 et R2 en justifiant votre réponse. En déduire que ϕ est un endomorphisme de l’espace vectoriel Cn[X].
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Partie II - Étude d’un premier exemple
Dans cette partie uniquement, on suppose que :

n = 2, A = X2 + 2X et B = X3 +X2 −X − 1 .

3. Montrer que la matrice de l’endomorphisme ϕ de C2[X] dans la base (1, X,X2) est :

M =

0 1 1
2 1 2
1 1 0

 ∈ M3(C) .

4. Déterminer les valeurs propres et les sous-espaces propres de la matrice M .
5. Justifier que l’endomorphisme ϕ est diagonalisable. Déterminer une base de C2[X] formée de vecteurs propres de ϕ.
6. Utiliser ce qui précède pour résoudre le système différentiel :∀t ∈ R, x′(t) = y(t) + z(t)

y′(t) = 2x(t) + y(t) + 2z(t)
z′(t) = x(t) + y(t)

Partie III - Étude du cas où B est scindé à racines simples
Dans cette partie, on ne suppose plus que n = 2 : le nombre n est un entier quelconque de N∗. Jusqu’à la fin de l’exercice, on
suppose que B est un polynôme scindé à racines simples. On note x0, . . . , xn ∈ C les racines de B qui sont donc des nombres
complexes distincts.
On définit les polynômes de Lagrange L0, . . . , Ln ∈ Cn[X] associés aux points x0, . . . , xn par :

∀k ∈ J0, nK, Lk =
n∏
i=0
i6=k

X − xi
xk − xi

.

En particulier, les relations suivantes sont vérifiées :

∀(k, j) ∈ J0, nK2, Lk(xj) =

{
1 si j = k
0 si j 6= k

.

III.1 - Décomposition avec les polynômes de Lagrange

7. Soit P ∈ Cn[X]. Montrer que x0, . . . , xn sont des racines du polynôme D = P −
n∑
i=0

P (xi)Li.

8. Déduire de la question précédente que pour tout P ∈ Cn[X], on a P =

n∑
i=0

P (xi)Li.

9. Montrer que (L0, . . . , Ln) est une base de Cn[X].

III.2 - Réduction de l’endomorphisme ϕ

Pour tout entier k ∈ J0, nK, on désigne respectivement par Qk ∈ C[X] et Rk ∈ Cn[X] le quotient et le reste dans la division
euclidienne de ALk par B.

10. Soit (j, k) ∈ J0, nK2. Montrer que Rk(xj) = 0 si j 6= k et que Rk(xk) = A(xk).
11. En utilisant 8, en déduire pour tout k ∈ J0, nK que ϕ(Lk) = A(xk)Lk.
12. Justifier que l’endomorphisme ϕ est diagonalisable et préciser ses valeurs propres.

Problème II
PARTIE I
Soit

∑
n=1

un la série de fonctions d’une variable réelle de terme général un défini :

∀x ∈ R, un(x) =
2x

x2 + n2π2

I.1. I.1.1. Montrer que
∑
un converge simplement sur R tout entier.

On note U =

+∞∑
n=1

un la somme de la série de fonctions un .

I.1.2. Montrer que, pour tout a > 0 ,
∑
un converge normalement sur [−a, a].

La série
∑
un converge-t-elle normalement sur R ?

I.1.3. Montrer que U est continue sur R.
I.2. I.2.1. Soit n ∈ N∗. Déterminer la primitive qui s’annule en 0 de la fonction un.

I.2.2. Soit (vn)n∈N∗ la suite de fonctions définie par : pour tout n ∈ N∗, pour tout x ∈ R, vn(x) = ln

(
1 +

x2

n2π2

)
.

Montrer que
∑
vn converge simplement sur R.

I.2.3. On note V =

+∞∑
n=1

vn la somme de la série de fonctions
∑
vn.

Montrer que V est la primitive qui s’annule en 0 de la fonction U .
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I.3. On considère la suite (pn)n∈N de fonctions polynômes sur R définie par :
pour tout x ∈ R, p0(x) = x ;

pour tout n ∈ N∗ et pour tout x ∈ R, pn(x) = x
k=n∏
k=1

(
1 +

x2

k2π2

)
.

Montrer que la suite (pn)n∈N converge simplement sur R , lorsque n tend vers +∞, vers une fonction p que l’on exprimera à l’aide
de V puis de IdR.On devra séparer les cas de x = 0, x > 0, x < 0.

Pour tout x ∈ R , la limite donnant p(x) sera alors notée : p(x) = x

+∞∏
k=1

(
1 +

x2

k2π2

)
.

PARTIE II
Pour tout x ∈ R, on note gx la fonction d’une variable réelle, périodique de période 2π , telle que :

pour tout t ∈]− π, π], on ait : gx(t) = ch
(
xt

π

)
.

On admet que : Pour tout x ∈ R, il existe deux suites réelles (ap(x))p>0 et (bp(x))p>1 telles que :

∀t ∈ R, gx(t) =
1

2
a0(x) +

∞∑
p=1

(ap(x) cos(pt) + bp(x) sin(pt))

et telles que la série de fonctions de variable t définies ci-dessus converge normalement sur R.

II.1.

II.1.1. En utilisant la parité de gx, donner la valeur de
∫ π

−π
gx(t) sin(nt)dt pour tout x ∈ R et pour tout n ∈ N

II.1.2. Calculer les intégrales suivantes, pour tout (p, n) ∈ N2∫ π

−π
cos(nt) sin(pt)dt,

∫ π

−π
cos(nt) cos(pt)dt,

∫ π

−π
sin(nt) sin(pt)dt

II.1.3. En remplaçant gx par le développement en série donné ci-dessus, montrer que

∀x ∈ R, ∀n ∈ N,
∫ π

−π
gx(t) sin(nt)dt = πbn(x)

∀x ∈ R, ∀n ∈ N,
∫ π

−π
gx(t) cos(nt)dt = πan(x)

II.1.4. Pour tout n ∈ N et tout x ∈ R, calculer an(x) et bn(x).
II.2.

II.2.1. En donnant à t une valeur particulière dans le développement en série de gx, montrer que, pour tout x ∈ R∗, U(x) =
ch (x)− 1

sh (x)
.

II.2.2. A partir de V (x) =

∫ x

0
U(t) dt et du résultat de II.2.1, donner à l’aide des fonctions usuelles une expression de la fonction

V définie à la question I.2.3.

II.2.3. En déduire que, pour tout x ∈ R∗, on a : ch 2(x
2
) =

+∞∏
k=1

(
1 +

x2

k2π2

)
.
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