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— L’usage de la calculatrice ou de tout dispositif électronique ou document est interdit.

— L’énoncé de cette épreuve comporte 3 pages de texte : un exercice et deux problémes indépendants.

— Le candidat est prié de numéroter ses copies.

— Si, au cours de I’épreuve, un candidat repére ce qui lui semble étre une erreur d’énoncé, il le signale sur sa copie et poursuit sa
composition en expliquant les raisons des initiatives qu’il est amené a prendre.

— Le candidat attachera la plus grande importance a la clarté, a la précision et a la concision de la rédaction.

Exercice
1 5 3
Onpose A=|1 0 O
0 1 0

1. A est-elle diagonalisable 7

3 0 0
2. Montrer que A est semblablea T = |0 —1 1
0o 0 -1

3. Montrer que T'= D + N ou D est une matrice diagonale et N une matrice nilpotente et ND = DN.
4. En déduire T™.
5. Justifier sans les calculer que les coefficients de A™ sont de la forme a3™ + (—1)"(8 + n) ot (a, 8,7) € R3.
6. On s’intéresse aux suites réelles (un)nen définies par : Vn € N, uny3 = unt2 + Sunt1 + 3un.
Un+42
(a) Onpose:VneN, X, = [ unt1
Un

Justifier que X, 1 = AX,.

(b) En déduire ’expression de u,. On pourra juste donner la forme et indiquer seulement comment déterminer de maniére précise
les paramétres dont u, dépend.

Probléme 1

Présentation générale

On rappelle le théoréme de la division euclidienne pour les polynomes : si U € C[X] et V € C[X] sont deux polynomes avec V # 0, alors il
existe un unique couple (Q, R) € C[X]? tel que :
U=VQ+R avec (R=0 ou deg(R)<deg(V)).

Les polynémes @ et R sont respectivement appelés le quotient et le reste dans la division euclidienne du polynéme U par V.

Dans cet exercice, on se donne un entier n € N* et un couple (A, B) € C,[X] x C[X] tel que deg(B) = n + 1. On considére également
Papplication ¢ définie sur C, [X] qui & un polynéme P € C,[X] associe le reste dans la division euclidienne de AP par B.

Par exemple, si on suppose que l'on a :

n=2 A=X? B=X’-X, P=X%2+4+X+1,
alors, en effectuant la division euclidienne de AP par B, on obtient :
AP=X* 4+ X34+ X?=BQ+R avec Q=X+1 et R=2X%2+X,
donc on a ¢(P) =2X? + X.

Partie I - Généralités sur application ¢

Dans cette partie, on démontre que I’application ¢ est un endomorphisme de C,[X].
1. Justifier que pour tout polynéme P € C,[X], on a ¢(P) € Cn[X].
On considére deux polyndémes P; € Cp[X] et P> € C,[X]. Par le théoréme de la division euclidienne rappelé dans la présentation,
il existe (Q1, R1) € C[X] X Cyp[X] et (Q2, R2) € C[X] x Cp[X] tels que :
AP1 =BQ1+R1 e AP, =BQ2+R>.

2. Soit A € C. Exprimer le quotient et le reste dans la division euclidienne de A(P; + AP»2) par B en fonction de X et des polynémes
Q1, Q2, R1 et Ry en justifiant votre réponse. En déduire que ¢ est un endomorphisme de I’espace vectoriel C,,[X].



Partie II - Etude d’un premier exemple

Dans cette partie uniquement, on suppose que :
n=2 A=X242X e B=X>4+X2-X-1.

Montrer que la matrice de ’endomorphisme ¢ de C2[X] dans la base (1, X, X?2) est :

0o 1 1
M=12 1 2 GMg((C).
1 1 0

4. Déterminer les valeurs propres et les sous-espaces propres de la matrice M.

5. Justifier que I'endomorphisme ¢ est diagonalisable. Déterminer une base de C2[X] formée de vecteurs propres de .

6. Utiliser ce qui précéde pour résoudre le systéme différentiel :Vt € R,

10.
11.
12.

z'(t) = y(t) + z(t)
y'(t) = 2z(t) +y(t) +22()
Z(t) = z(t) + y(t)

Partie III - Etude du cas ot B est scindé a racines simples

Dans cette partie, on ne suppose plus que n = 2 : le nombre n est un entier quelconque de N*. Jusqu’a la fin de ’exercice, on

suppose que B est un polynoéme scindé a racines simples. On note zg,...,zn, € C les racines de B qui sont donc des nombres
complexes distincts.
On définit les polynéomes de Lagrange Lo, ..., L, € C,[X] associés aux points g, ..., Zn par :

X -y
Vke[o,n], Lip=]]—=—.
Sl —
1=0
ik
En particulier, les relations suivantes sont vérifiées :

, 2 L1 s oj=k
Yk, j) € [0,n]2, Lk(m])_{o Tk

ITII.1 - Décomposition avec les polyndémes de Lagrange

n
Soit P € C,[X]. Montrer que zo, ...,y sont des racines du polynéme D = P — Z P(x;)L;.
1=0
n
Déduire de la question précédente que pour tout P € C,[X], ona P = Z P(z;)L;.
i=0
Montrer que (Lo, ..., Ly) est une base de Cp,[X].

ITI.2 - Réduction de I’endomorphisme ¢

Pour tout entier k € [0,n], on désigne respectivement par Qr € C[X] et Ry € Cn[X] le quotient et le reste dans la division
euclidienne de ALy par B.

Soit (4, k) € [0,n]2. Montrer que Ry(z;) =0 si j # k et que Ry(zx) = A(zg).
En utilisant 8, en déduire pour tout k € [0,n] que p(Lg) = A(xg)Ly.

Justifier que ’endomorphisme ¢ est diagonalisable et préciser ses valeurs propres.

Probléme 11

PARTIE I

Soit Z uy, la série de fonctions d’une variable réelle de terme général u, défini :

I.1.

I.2.

n=1
2x
Vz € R, up(z) = i

I.1.1. Montrer que > u, converge simplement sur R tout entier.

—+o00
On note U = Z un la somme de la série de fonctions u,, .
n=1
1.1.2. Montrer que, pour tout a > 0, > uy, converge normalement sur [—a,al.
La série > uy, converge-t-elle normalement sur R ?
1.1.3. Montrer que U est continue sur R.
1.2.1. Soit n € N*. Déterminer la primitive qui s’annule en 0 de la fonction uy,.

2
x
1.2.2. Soit (vn)nen* la suite de fonctions définie par : pour tout n € N*, pour tout « € R, v, (z) =In (1 + 5 )
n2m

Montrer que Y vy, converge simplement sur R.
—+oo
1.2.3. On note V = Z v, la somme de la série de fonctions ) vy,.
n=1
Montrer que V est la primitive qui s’annule en 0 de la fonction U.



1.3. On considére la suite (pn)nen de fonctions polynémes sur R définie par :
pour tout z € R, po(z) = x;

k=n 2
T
pour tout n € N* et pour tout z € R, pp(z) =z H (1 + k27r2)'
k=1

Montrer que la suite (pn)nen converge simplement sur R , lorsque n tend vers +o0, vers une fonction p que I’on exprimera a 'aide
de V puis de Idg.On devra séparer les cas de x = 0,z > 0,z < 0.

+oo 2
Pour tout z € R, la limite donnant p(x) sera alors notée : p(x) = xH (1 + ];7)
k=1
PARTIE 11

Pour tout x € R, on note g, la fonction d’une variable réelle, périodique de période 27 , telle que :

t
pour tout ¢t €] — m, 7|, on ait : g.(t) = ch (z—)
7r

On admet que : Pour tout z € R, il existe deux suites réelles (ap())p>0 et (bp(x))p>1 telles que :

¥t € R, gu(t) = Jao(z) + D (ap(x) cos(pt) + by (z) sin(pt))
p=1

et telles que la série de fonctions de variable ¢t définies ci-dessus converge normalement sur R.

II.1.

™

11.1.1. En utilisant la parité de g, donner la valeur de / gz (t) sin(nt)dt pour tout z € R et pour tout n € N
—T

11.1.2. Calculer les intégrales suivantes, pour tout (p,n) € N2

T

/7r cos(nt) sin(pt)dt, /7r cos(nt) cos(pt)dt,/ sin(nt) sin(pt)dt

—T — T — T
II1.1.3. En remplacant g, par le développement en série donné ci-dessus, montrer que

Vo € R,Vn € N,/ gz (t) sin(nt)dt = 7wby, ()

Vz € R,Vn € N,/ gz () cos(nt)dt = wan(z)

II.1.4. Pour tout n € N et tout z € R, calculer an(x) et by ().
II.2.

1I.2.1. En donnant & ¢ une valeur particuliére dans le développement en série de g, montrer que, pour tout z € R*, U(z) =
ch(z)—1
sh (z)

x
11.2.2. A partir de V(z) = / U(¢t) dt et du résultat de I1.2.1, donner a P’aide des fonctions usuelles une expression de la fonction

0
V définie a la question 1.2.3.

+o0 2
11.2.3. En déduire que, pour tout x € R*, on a : chQ(%) = H (1 + kb:?)
k=1



