

## PSI MATHEMATIQUES Octobre 2025

## Feuille d'Exercices $n^{\circ}4$ Éléments propres d'un endomorphisme ou d'une matrice carrée

Exercice 1. Éléments propres de :

1. 
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
.

2. (CCINP 23)
$$A = \begin{pmatrix} -m-1 & m & 2 \\ -m & 1 & m \\ -2 & m & 3-m \end{pmatrix}$$
.

3. (CCINP 2019) 
$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & \cdots & 0 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & 0 & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R}).$$

- 4. L'endomorphisme de  $C^{\infty}(\mathbb{R}, \mathbb{R})$  défini par  $\Psi : f \mapsto f''$ .
- 5. f défini par  $f((u_n)_n) = (v_n)_n$  où  $v_n = u_{n+1} u_n$ .
- 6. f défini par  $\forall P \in \mathbb{K}[X], f(P)(X) = (X a)(X b)P'(X) nXP(X)$  avec  $(a, b) \in \mathbb{K}^2$  où  $a \neq b$ .

Exercice 2. Sans calcul du polynôme caractéristique, montrer que 0 et 5 sont valeurs propres de  $A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 5 & 4 \\ 1 & 0 & 1 \end{pmatrix}$  et déterminer tous les éléments propres de A

**Exercice 3.** Soit A une matrice donnée non nulle de  $\mathcal{M}_n(\mathbb{K})$  et u l'endomorphisme défini par :

$$\forall M \in \mathcal{M}_n(\mathbb{K}), u(M) = \operatorname{tr}(A) M - \operatorname{tr}(M) A$$

Déterminer ses éléments propres.

Exercice 4. Matrice compagnon

1. Soit  $(a_0, \dots, a_n) \in \mathbb{K}^n$ . Donner le polynôme caractéristique de :

$$\begin{pmatrix}
0 & 0 & \cdots & 0 & a_0 \\
1 & \ddots & & \vdots & a_1 \\
0 & \ddots & \ddots \vdots & \vdots & \\
\vdots & \ddots & \ddots & 0 & a_{n-2} \\
0 & \cdots & 0 & 1 & a_{n-1}
\end{pmatrix}$$

2. Montrer que tout polynôme unitaire P est polynôme caractéristique d'une matrice. On appelle cette matrice, la matrice compagnon de P.

**Exercice 5.** (CCINP 24) Soit E le  $\mathbb{R}$ -espace vectoriel des fonctions continues de [0,1] dans  $\mathbb{R}$ . Pour  $f \in E$ , on définit :

$$\varphi(f): [0,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto \begin{cases} \frac{1}{x} \int_0^x f(t) dt & \text{si} \quad x \neq 0 \\ f(0) & \text{si} \quad x = 0 \end{cases}$$

1

- 1. Montrer que  $\varphi$  est un endomorphisme de E.
- 2. Montrer que 0 n'est pas valeur propre de  $\varphi$ .
- 3. Montrer que 1 est valeur propre de  $\varphi$  et déterminer le sous-espace propre associé.

4. Déterminer l'ensemble des valeurs propres et leurs sous-espaces propres associés.

**Exercice 6.** (CCINP 2019) Soit  $M \in \mathcal{M}_n(\mathbb{R})$  vérifiant  $M^3 - 4M^2 + 4M = 0$  et  $\operatorname{tr}(M) = 0$ .

Montrer que les valeurs propres de M sont racines de  $X^3-4X^2+4X$  et en déduire l'ensemble des matrices qui vérifient ces hypothèses.

**Exercice 7.** Soit  $n \geq 1$  et  $A, B \in \mathcal{M}_n(\mathbb{R})$  tels que AB - BA = A.

- 1. Montrer que  $\forall k, A^k B BA^k = kA^k$
- 2. Montrer que , pour tout  $k \geq 0$ , si  $A^k \neq 0$ ,  $A^k$  est vecteur propre de  $u: M \longmapsto MB BM$ .
- 3. En déduire que A est nilpotente.

**Exercice 8.** (CCINP ) Soit l'application  $\varphi$  qui au polynôme  $P \in \mathbb{R}_3[X]$  associe le reste de la division euclidienne de  $X^2P$  par  $X^4-1$ .

- 1. Prouver que  $\varphi$  est un endomorphisme de  $\mathbb{R}_3[X]$ .
- 2. Déterminer ses éléments propres.
- 3. La matrice représentant  $\varphi$  dans la base canonique de  $\mathbb{R}_3[X]$  est-elle inversible? Si oui, donner son inverse.

**Exercice 9.** (CCINP) Soient E un espace vectoriel et  $(u, v) \in \mathcal{L}(E)^2$ .

- 1. Soit  $\lambda \neq 0$  valeur propre de  $v \circ u$ . Montrer que  $\lambda$  est valeur propre de  $u \circ v$ .
- 2. Montrer que si E est de dimension finie, le résultat reste vrai pour  $\lambda = 0$ .
- 3. On choisit  $E = \mathbb{R}[X], u(P) = P', v(P) = Q$  où Q est la primitive de P nulle en 0. Calculer  $\ker(u \circ v)$  et  $\ker(v \circ u)$ . Conclusion?

**Exercice 10.** : Soient  $n \in \mathbb{N}^*$ ,  $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$  telles que A + C = B + D.

On note 
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R}).$$

Exprimer  $\chi_M$  comme produit de deux polynômes de degré n.

Exercice 11. (ENSAM, Centrale)

Pour f continue de  $\mathbb{R}_+$  dans  $\mathbb{R}$ , on pose  $T(f)(x) = \frac{1}{x} \int_0^x f(t) dt$  si x > 0 et T(f)(0) = f(0).

- 1. Montrer que T est un endomorphisme de l'espace des fonctions continues sur  $\mathbb{R}_+$ .
- 2. Est-il surjectif? Injectif?
- 3. Donner ses éléments propres.

**Exercice 12.** (Mines-Télécom 2022) On considère  $(A, B) \in \mathcal{M}_n(\mathbb{R})^2$  telles que tr $(A) \neq 0$  et  $B \neq 0$ . On pose

$$\Psi \quad \mathcal{M}_n(\mathbb{R}) \quad \to \quad \mathcal{M}_n(\mathbb{R}) \\
M \quad \mapsto \quad \operatorname{tr}(AM)B + M$$

- 1. On définit  $\Phi: M \mapsto \operatorname{tr}(AM)$ . Montrer que  $\Phi$  est une forme linéaire non nulle.
- 2. Montrer que si  $M \in \text{Ker}(\Phi)$ , alors M appartient à un sous espace propre de  $\Psi$ .
- 3. Montrer ensuite que si M est un vecteur propre de  $\Psi$  associé à une valeur propre différente de 1 , alors M et B sont liées.
- 4. Donner toutes les valeurs propres et tous les vecteurs propre de  $\Psi$ .

Exercice 13. Déterminer le polynôme caractéristique, sans calcul de déterminant :  $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 \end{pmatrix}.$ 

**Exercice 14.** (Mines-Ponts 23) Soient E le  $\mathbb{R}$ -ev des fonctions de classe  $C^{\infty}$  de  $\mathbb{R}$  dans  $\mathbb{R}, p$  et q deux réels avec p+q=1 et  $p\in [-1,0]\cup [0,1]$ . On pose u(f)=g avec  $g:x\longrightarrow f(px+q)$ 

- 1. Montrez que u est un automorphisme de E.
- 2. Montrez que les vp de u sont dans ]-1,1]
- 3. Montrez que si f est vecteur propre de u, il existe un entier k tq  $f^{(k)} = 0$ . En déduire l'ensemble des vecteurs propres de u. [2022 : Question absente] .
- 4. Calculez  $u^n(f)(x)$  par récurrence. [2022 : Question absente].

## **Exercice 15.** (Mines 2012)

- ercice 15. (Mines 2012)

  1. Déterminer les éléments propres sur  $\mathbb C$  de  $A=\begin{pmatrix}0&1&0&\cdots&0\\0&0&1&\ddots&\vdots\\\vdots&\ddots&\ddots&\ddots&0\\0&\cdots&0&0&1\\1&0&\cdots&0&0\end{pmatrix}$ .
- 2. Calculer les puissances de A et en déduire les éléments propres sur  $\mathbb C$  de

$$C(a_0, \dots, a_{n-1}) = \begin{pmatrix} a_0 & a_1 & \dots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & a_1 & & a_{n-2} \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_{n-1} & a_0 \end{pmatrix}$$