

PSI

MATHEMATIQUES

Novembre 2025

Feuille d'Exercices $n^{\circ}5$ Séries Numériques

Exercice 1. Étudier la nature de la série de terme général (u_n) dans les cas suivants :

1.
$$u_n = \frac{1}{n^2 + n + 2 + \sqrt{n}}$$

2.
$$u_n = \frac{a^n}{1 + a^{2n}}$$
.

$$3. \ u_n = \left(\frac{n}{n+1}\right)^{n^2}$$

4.
$$u_n = 2\ln(n^3 + 1) - 3\ln(n^2 + 1)$$

5.
$$u_n = n^{-\alpha^2}$$

6.
$$u_n = \frac{(2n)!n^{2n}}{2^n n!(3n)!}$$

7.
$$u_n = \sqrt[n]{n+1} - \sqrt[n]{n}$$
.

8.
$$u_n = \operatorname{Arccos}\left(\frac{n^3+1}{n^3+2}\right)$$
.

9.
$$u_n = \frac{(-1)^n}{\ln n}$$
.

Exercice 2. Étudier la convergence de la série de terme général u_n et calculer sa somme, en cas de convergence.

1.
$$u_n = na^n$$

$$2. \quad u_n = \frac{1}{n(n+1)}$$

3.
$$u_n = \frac{1}{n(n+2)}$$
.

$$4. u_k = \frac{1}{k(k+1)\dots(k+p)}.$$

$$5. u_k = \ln\left(1 + \frac{2}{k(k+3)}\right).$$

6.
$$u_k = \ln\left(\cos\frac{1}{2^k}\right)$$
.

Exercice 3.

On considère une suite $(u_n)_n$ définie par : $u_0 \in]0, \pi[$ et $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$

- 1. Montrer que $(u_n)_n$ converge et déterminer sa limite.
- 2. Montrer que la série $\sum_{n\geq 0} \ln\left(\frac{u_{n+1}}{u_n}\right)$ diverge.
- 3. En déduire la nature des séries $\sum_{n\geq 0} u_n^2$ puis $\sum_{n\geq 0} u_n$.

Exercice 4. (CCINP 24 sans préparation)

Soit $p \in \mathbb{N}$ fixé.

- 1. Montrer que $\sum_{n\geqslant 0} \frac{n^p}{2^n}$ converge.
- 2. On pose $S_p = \sum_{n=0}^{+\infty} \frac{n^p}{2^n}$.
 - (a) Exprimer S_p en fonction de S_0, \ldots, S_{p-1} en faisant apparaître le développement de $(n+1)^p$.
 - (b) Montrer que $\forall p \in \mathbb{N}, S_p \in \mathbb{N}$.

Exercice 5. (IMT 23)

Trouver un équivalent de $\sum_{k=n+1}^{2n} \frac{1}{\sqrt{k}}$ en utilisant :

- (i) une comparaison série-intégrale
- (ii) les sommes de Riemann.

Exercice 6. (IMT 23)

Nature de la série de terme général $u_n = \frac{(-1)^n}{(-1)^n + \ln(n)\sqrt{n}}, n \ge 1.$

Exercice 7. (Navale 19)

Trouver un équivalent de $\sum_{k=n+1}^{+\infty} \frac{1}{k^3}$.

Exercice 8. (CCINP 19)

- 1. Montrer que l'équation $x^n + x\sqrt{n} 1 = 0$ a une unique solution dans]0,1[, notée u_n , pour $n \in \mathbb{N}^*$.
- 2. Montrer que la suite $(u_n)_n$ converge vers 0.
- 3. Quelle est la nature de la série de terme général u_n ?
- 4. Quelle est la nature de la série de terme général $(-1)^n u_n$?

1. Soit, pour tout entier $n \ge 1, u_n = \frac{1 \times 3 \times 5 \times \cdots \times (2n-1)}{2 \times 4 \times 6 \times \cdots \times (2n)}$. Exercice 9.

- (a) Quelle est la limite de u_{n+1}/u_n ?
- (b) Montrer que la suite de terme général nu_n est croissante. En déduire que la série de terme général u_n est divergente.
- 2. So it, pour tout entier $n\geq 2, v_n=\frac{1\times 3\times 5\times \cdots \times (2n-3)}{2\times 4\times 6\times \cdots \times (2n)}$
 - (a) Quelle est la limite de v_{n+1}/v_n ?
 - (b) Montrer que, si $0 < \alpha < 3/2$, on a $(n+1)^{\alpha}v_{n+1} \leq n^{\alpha}v_n$. En déduire que la série de terme général v_n

Exercice 10. Soit $a_n = \int_0^1 \frac{\cos(\pi u)}{u+n+1} du$.

- 1. Montrer que la suite (a_n) est décroissante de limite nulle
- 2. En déduire la nature de $\sum \int_n^{n+1} \frac{\cos(\pi x)}{1+x} dx$

Exercice 11. vérifier que $\frac{1}{n\ln(n)} \sim (\ln(\ln(n+1)) - \ln(\ln(n)))$ quand n tend vers $+\infty$. En déduire un équivalent simple de la somme $\sum_{k=2}^{n} \frac{1}{k \ln(k)}$

Exercice 12. (Mines) On pose $u_n = \sum_{k=n}^{\infty} \frac{(-1)^k}{\sqrt{k+1}}$. Étudier la convergence de la série $\sum u_n$.

Exercice 13. (Centrale) Soit $\sum u_n$ une séries à termes strictement positifs et $s_n = \sum_{k=0}^n u_k$.

- 1. Si $\sum u_n$ converge, que peut-on dire de la série $\sum \frac{u_n}{s_n}$
- 2. On suppose que $\sum u_n$ est divergente.
 - (a) Soient m>p dans N.Montrer que $\sum_{k=p+1}^m \frac{u_n}{s_n} \ge 1 \frac{s_p}{s_m}$. Que peut-on déduire pour $\sum \frac{u_n}{s_n}$. (b) prouver que pour tout $n \ge 1$ $\frac{1}{s_{n-1}} \frac{1}{s_n} \ge \frac{u_n}{(s_n)^2}$

 - (c) Montrer que la série $\sum \frac{u_n}{(s_n)^2}$ converge