

Déroulement d'une colle :

• Au début de colle, une question de cours sera systématiquement posée : Tout énoncé de proposition ou définition doit être particulièrement PRÉCIS.

Ce sera soit une <u>définition</u>, soit propriété soulignée, ou une formule encadrée dont les hypothèses précises permettant de l'utiliser doivent être connues. Quelques [preuves] signalées en crochet gras colorié sont exigibles.

Vous passez ensuite aux exercices.

Ch. III : Séries numériques

Révisions de PCSI

- Rappels de PCSI:
 - Série numérique, sommes partielles.
 - CNS de convergence d'1 série à termes positifs.

preuve

Séries géométriques $\sum_{n\geq 0} \gamma^n$,

Convergence et valeur de la somme si $|\gamma| < 1$

- <u>Séries de Riemann</u> $\sum_{\alpha>1} \frac{1}{n^{\alpha}}$, nature. [preuve]
- Séries absolument convergentes.
- Théorèmes de comparaison (entre séries positives ; d'une série réelle à une série positive) : encadrement $|u_n| \leq v_n$, équivalent à un terme strictement positif $u_n \sim v_n > 0$.
- Nouveautés PSI sur les séries numériques :
 - Séries alternées, Critère spécial des séries alternées et majoration du reste $|R_N| \leq |u_{N+1}|$.
 - <u>Formule de Stirling</u> $n! \sim \sqrt{2n\pi} \left(\frac{n}{e}\right)^n$
 - Produit de Cauchy (démonstration non exigible) :

chap. V: Suites de fonctions

— Convergence simple :
$$(f_n)_{n\in\mathbb{N}}$$
 CVS sur I vers f si : $\forall x\in I, \ f_n(x)\xrightarrow[n\to+\infty]{} f(x)$

$$\begin{split} & \text{si } \sum_p u_p \quad \text{et } \sum_q v_q \quad \text{sont } \quad \text{ACV, alors } \quad \text{la s\'erie} \\ & \sum_{k \geq 0} \left(\sum_{p=0}^k u_p v_{n-p} \right) \quad \text{est } \quad \text{ACV } \quad \text{et sa somme est \'egale} \\ & \text{aux produit } \left(\sum_{p=0}^{+\infty} u_p \times \sum_{q=0}^{+\infty} v_q \right). \end{split}$$

• Exemples à savoir traiter :

 $\sum_{n=1}^{\infty} \frac{1}{n}$ est divergente, non grossièrement divergente. De plus la suite $(s_n)_{n\geq 1}$, définie pour $n\geq 1$ par $s_n = -\ln(n) + \sum_{k=1}^n \frac{1}{k}$, est décroissante et minorée donc

$$s_n = -\ln(n) + \sum_{k=1}^{\infty} \frac{1}{k}$$
, est décroissante et minorée donc convergente vers une limite γ .

 $\sum_{n>1} \frac{(-1)^n}{n}$ est convergente, non absolument conver-

$$\sum_{n\geq 2} \ln\left(1+\frac{(-1)^n}{\sqrt{n}}\right) \text{ est divergente, même si son terme}$$

général est équivalent à $\frac{(-1)^n}{\sqrt{n}}$ qui est lui le terme général d'une série convergente

N.B. les séries exponentielles, la comparaison sérieintégrale, la règle de d'Alembert ne peuvent faire l'objet d'exercices que pour les 5/2

Convergence uniforme d'une suite de fonctions sur un intervalle.

 $(f_n)_{n\in\mathbb{N}}$ suite de fonctions bornées CVU sur I vers f si : $\sup_{t \in I} \{ |f_n(t) - f(t)| \} = \|f_n - f\|_{\infty, I} \xrightarrow[n \to +\infty]{} 0$

 La convergence uniforme implique la convergence simple. [preuve pour les 5/2]