

Déroulement d'une colle :

• Au début de colle, une question de cours sera systématiquement posée : Tout énoncé de proposition ou définition doit être particulièrement PRÉ-

Ce sera soit une définition, soit propriété soulignée, ou une formule encadrée dont

les hypothèses précises permettant de l'utiliser doivent être connues.

Quelques points [preuves] signalées en crochet gras colorié sont exigibles de tous les étudiants.

Quelques [preuves*] signalées en crochet gras colorié sont exigibles des étudiants qui ont une compréhension du cours plus avancée.

Vous passez ensuite aux exercices

ch. V : Polynômes annulateurs; interpolation

- Evaluation d'un polynôme en une matrice ou en un endomorphisme
- Polynôme annulateur d'une matrice ou d'un endomorphisme.
- Calcul de l'inverse à l'aide d'un polynôme annulateur (ne s'annulant pas en 0)
- Calcul des puissances d'une matrice via le polynôme de reste de la division euclidienne par un polynôme annulateur.
- Polynômes d'interpolation de Lagrange (x_0,\ldots,x_n) deux à deux distincts :

l'unique polynôme de $\mathbb{K}_n[X]$ tel que $L_i(x_j) = \delta_i^j$ pour tous

$$i, j \in \llbracket 0, n \rrbracket$$
 est $L_i = \prod_{0 \le k \le n, \ k \ne i} \frac{X - x_k}{x_i - x_k}$

énoncé pour tous [preuve niveau *] — Théorème d'interpolation : (L_0,\ldots,L_n) est une base de $\mathbb{K}_n[X]$, et la décomposition unique d'un polynôme $P \in$ $\mathbb{K}_n[X]$ est donnée par la formule :

$$P = \sum_{i=0}^{n} P(a_i) L_i$$

lemme : (L_0, \ldots, L_n) est libre dans $\mathbb{K}_n[X]$ [niveau \star]

Déterminants de Vandermonde.

Formule $V_n(x_1, \dots x_n) = \prod_{1 \leq i < j \leq n} (x_j - x_i)$ [pour tous]

ch. VI: Suites et séries de fonctions intégrables

- Intégrale généralisée absolument convergente.
- Fonction intégrable sur un intervalle. Pour une fonction f intégrable sur I, on note $\int_{-\pi}^{\pi} f$ la valeur de l'intégrale généralisée convergente de f sur I.
- Intégrabilité en une borne, fonctions de référence

 $t \longmapsto \ln t$ est intégrable en 0.

 $t \longmapsto e^{-\beta t}$ est intégrable en $+\infty$ ssi $\beta > 0$.

 $t \longmapsto t^{-\gamma}$ est intégrable en $+\infty$ ssi $\gamma > 1$.

 $\begin{array}{l} t\longmapsto t^{-\alpha} \text{ est int\'egrable en } 0 \text{ ssi } \alpha<1.\\ t\longmapsto \frac{1}{|t-a|^{\alpha}} \text{ est int\'egrable en } a \text{ ssi } \alpha<1. \end{array}$

- Espace vectoriel $L^1(I, \mathbb{K})$ des fonctions intégrables (continues par morceaux).
- **Théorèmes de comparaisons** $(\sim, O(), o())$ pour l'intégrabilité.
- Théorème de convergence dominée.
- Théorème d'intégration terme à terme sur un intervalle quelconque.
- Condition suffisante de nullité d'une fonction continue intégrable et d'intégrale nulle.
- Norme sur un \mathbb{K} espace vectoriel.
- Norme $\| \|_1: f \longmapsto \int_I |f| \operatorname{sur} L^1(I, \mathbb{K}).$

N.B.: on a déjà vu la norme infinie $\| \|_{\infty}^{I}$ sur l'espace $\mathcal{F}_{b}(I,\mathbb{K})$ des fonctions bornées sur I.

Théorème 1 (de comparaison).

Soient $I = [\alpha, \beta[$ un intervalle réel avec $\beta = \sup(I), f, g \in \mathcal{CM}(I, \mathbb{K}).$

- 1. Si g est intégrable en β et si : $f(t) \underset{t \to \beta}{=} O(g(t))$, alors f est intégrable en β .
- 2. Si g est intégrable en β et si : $f(t) \underset{t \to \beta}{=} o(g(t))$, alors f est intégrable en β .
- 3. Si $f(t) \underset{t \to \beta^-}{\sim} g(t)$, f est intégrable en β si et seulement si g est intégrable en β .

Théorème 2 (de convergence dominée, admis).

Soient I un $\mathbf{intervalle}$ de \mathbb{R} , $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$ tels que :

- i) pour tout $n \in \mathbb{N}$, f_n est continue par morceaux sur I;
- ii) la suite (f_n) converge simplement sur I vers une fonction f continue par morceaux sur I;
- iii) il existe une fonction $\varphi:I o\mathbb{R}$ continue par morceaux, positive et intégrable telle que : pour tout $n \in \mathbb{N}$, $|f_n| \leq \varphi$. (hypothèse de domination de $(f_n)_n$ par une fonction intégrable)

Alors les fonctions f_n , pour $n \in \mathbb{N}$, et f sont intégrables sur I, la suite $\left| \left(\int_I f_n \right)_{n \geq 0}$ converge $\right|$, et $\left| \int_I f = \lim_{n \to +\infty} \int_I f_n \right|$

$$\overline{\left(\int_I f_n
ight)_{n\geq 0}}$$
 converge , et $\overline{\int_I f = \lim_{n o +\infty} \int_I f_n}$

Théorème 3 (d'intégration terme à terme sur un intervalle quelconque).

Soient I un intervalle de \mathbb{R} , $(f_n)_{n\in\mathbb{N}}\in\mathcal{F}(I,\mathbb{K})^{\mathbb{N}}$ tels que :

- i) pour tout $n \in \mathbb{N}$, f_n est continue par morceaux et intégrable sur I;
- ii) la série de fonctions $\sum_{n=0}^{\infty} f_n$ <u>converge simplement</u> sur I vers une fonction S continue par morceaux sur I;
- iii) la série numérique $\sum_{n>0} \int_I |f_n|$ converge. (hypothèse de domination)

Alors la somme
$$S$$
 de la série de fonctions $\sum_{n\geq 0} f_n$ est intégrable sur I , la série $\sum_{n\geq 0} \int_I f_n$ converge, et

$$\int_{I} \left(\sum_{n=0}^{+\infty} f_n \right) = \sum_{n=0}^{+\infty} \int_{I} f_n \ .$$

Programme de colle n° 8, quinzaine 4

spé PC 2023-2024

 $\grave{a}\ venir: fonctions\ int\'egrables$

Liste (en construction) [préparation avancée *] :

T1 : Clémence T2 : Louis

T3: Ollie (Mathéïs)

T4: Marie

T5 : Arthus, Volodymyr T7 : Enora, Camille G.