pour le 14/12 novem

Préliminaires : matrices de Kac de taille n+1

Dans cette partie, on introduit la matrice A_n , On utilise les résultats de la Partie II pour étudier les propriétés spectrales de la matrice A_n .

Soit $n \in \mathbb{N}^*$ un entier naturel fixé. On note A_n la matrice tridiagonale suivante :

$$A_{n} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ n & 0 & 2 & & & \vdots \\ 0 & n-1 & 0 & 3 & & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & 2 & 0 & n \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R}).$$

On admet que A_n est diagonalisable sur \mathbb{R} , que les valeurs propres de A_n sont les entiers de la forme 2k-n pour $k \in \llbracket 0, n \rrbracket$ et que :

$$\operatorname{Ker}(A_n - nI_{n+1}) = \operatorname{Vect} \begin{pmatrix} p_0 \\ p_1 \\ \vdots \\ p_n \end{pmatrix},$$

où pour tout $k \in \llbracket 0, n
rbracket$, on note $p_k = \binom{n}{k}$

Dans ce problème, on donne une application probabiliste de l'étude de la matrice A_n .

Exercice de probabilités

Étant donné un entier $n\in\mathbb{N}^*$, on dispose de deux urnes U_1 et U_2 contenant à elles deux n boules numérotées de 1 à n. On note N_0 la variable aléatoire égale au nombre de boules initialement contenues dans l'urne U_1 .

À chaque instant entier $k\in\mathbb{N}^*$, on choisit un des n numéros de façon équiprobable puis on change d'urne la boule portant ce numéro. les choix successifs sont supposés indépendants.

Pour $k\in\mathbb{N}^*$, on note N_k la variable aléatoire égale au nombre de boules dans l'urne U_1 après l'échange effectué à l'instant k.

Exemple : supposons n=4 et qu'à l'instant 0, l'urne U_1 contient les boules numérotées 1,3,4 et l'urne U_2 la boule 2. On a dans ce cas $N_0 = 3$.

- Si le numéro 3 est choisi à l'instant 1, on retire la boule 3 de U_1 et on la place dans U_2 . On a alors $N_1=2$.
- Si le numéro 2 est choisi à l'instant 1, on retire la boule 2 de U_2 et on la place dans U_1 . On a alors $N_1=4$.

Pour $l \in [0, n]$, on note $E_{k,l}$ l'événement $(N_k = l)$ et $p_{k,l} = \mathbb{P}(E_{k,l})$ sa probabilité.

On note enfin
$$Z_k = \begin{pmatrix} p_{k,0} \\ p_{k,1} \\ \vdots \\ p_{k,n} \end{pmatrix}$$
 le vecteur qui code la loi de la variable aléatoire N_k .

Devoir Maison 1/4

- **Q1.** Pour $k \in \mathbb{N}$, que peut-on dire de la famille $(E_{k,0}, E_{k,1}, \dots, E_{k,n})$?
- **Q2.** Si l'urne U_1 contient j boules à l'instant k, combien peut-elle en contenir à l'instant k+1?
- **Q3.** Pour $k \in \mathbb{N}$ et $j, l \in [0, n]$, déterminer :

pour le 14/12 novemb

$$\mathbb{P}_{E_{k,l}}(E_{k+1,j}).$$

On traitera séparément les cas j = 0 et j = n.

Q4. Démontrer que pour tout $k \in \mathbb{N}$,

$$\mathbb{P}(E_{k+1,0}) = \frac{1}{n} \mathbb{P}(E_{k,1}) \text{ et } \mathbb{P}(E_{k+1,n}) = \frac{1}{n} \mathbb{P}(E_{k,n-1})$$

et que :

$$\forall j \in [1, n-1], \ \mathbb{P}(E_{k+1,j}) = \frac{n-j+1}{n} \mathbb{P}(E_{k,j-1}) + \frac{j+1}{n} \mathbb{P}(E_{k,j+1}).$$

Q5. En déduire que pour tout $k \in \mathbb{N}$,

$$Z_k = \frac{1}{n^k} A_n^k Z_0$$

On suppose jusqu'à la fin qu'à l'instant 0, on a disposé de façon équiprobable et indépendamment les unes des autres les n boules dans l'une des urnes U_1 ou U_2 .

- **Q6.** Déterminer la loi π de N_0 .
- **Q7**. Montrer que pour tout $k \in \mathbb{N}$, N_k a la même loi que N_0 . On pourra utiliser le résultat admis en préliminaires.
- Q8. Démontrer que π est l'unique loi de probabilité ayant la propriété suivante : si N_0 suit la loi π , alors toutes les variables N_k suivent la loi π .

Devoir Maison 2/4

Correction. CCINP PSI 2020 : Les matrices de Kac

Q31. Soit $k \in \mathbb{N}$. À l'étape k, l'urne U_1 contient $0, 1, 2, \ldots, n$ boules et ces "ou" sont exclusifs. Ainsi,

$$(E_{k,0},E_{k,1},\ldots,E_{k,n})$$
 est un système complet d'événements

- Q32. \blacktriangleright Si j=0, il n'y a pas de boule dans l'urne U_1 donc la boule tirée le sera dans U_2 et passera dans U_1 de sorte que l'on aura j=1 à l'étape suivante.
 - ▶ Si j=n, toutes les boules sont dans l'urne U_1 donc la boule tirée passera dans U_2 et on aura j=n-1 à l'étape suivante.
 - ▶ Si $j \in [1, n-1]$ alors l'urne U_1 va recevoir ou perdre une boule donc $j = j \pm 1$.

$$\boxed{0 \to 1 \qquad n \to n-1 \qquad j \to j \pm 1}$$

Q33. \blacktriangleright Si j=0. Le seul moyen de se retrouver sans boule dans l'urne U_1 à l'étape k+1 c'est qu'avant, il y en avait une seule (l=1) et qu'elle a été tirée. Ainsi,

$$\boxed{\mathbb{P}_{E_{k,l}}(E_{k+1,0})=0 \text{ si } l\neq 1 \text{ et } \mathbb{P}_{E_{k,1}}(E_{k+1,0})=\frac{1}{n}}$$

puisque si à l'étape k, U_1 contient une seule boule, il y a une chance sur n qu'elle soit choisie puisque l'on tire uniformément.

▶ Si j=n. Le seul moyen de se retrouver avec toutes les boules dans l'urne U_1 à l'étape k+1 c'est qu'avant, il y en avait n-1 (l=n-1) et que celle de U_2 a été tirée. Ainsi,

$$\mathbb{P}_{E_{k,l}}(E_{k+1,n})=0$$
 si $l
eq n-1$ et $\mathbb{P}_{E_{k,n-1}}(E_{k+1,n})=rac{1}{n}$

▶ Si $j \in [1, n-1]$, puisque l'on peut avoir une boule en plus ou une boule en moins, $\mathbb{P}_{E_{k,l}}(E_{k+1,j}) = 0$ si $l \neq j \pm 1$. Puis, si l = j-1, il faut tirer une boule de U_2 (qui en contient n-(j-1)=n-j+1) pour en ajouter une dans U_1 et ceci se fait avec probabilité $\frac{n-j+1}{n}$. De même, on obtient

$$\boxed{\mathbb{P}_{E_{k,l}}(E_{k+1,j}) = 0 \text{ si } l \neq j \pm 1 \quad \mathbb{P}_{E_{k,j-1}}(E_{k+1,j}) = \frac{n-j+1}{n} \text{ et } \mathbb{P}_{E_{k,j+1}}(E_{k+1,j}) = \frac{j+1}{n}}$$

Q34. \blacktriangleright Soit $j \in [1, n-1]$. Comme $(E_{k,0}, E_{k,1}, \dots, E_{k,n})$ est un système complet d'événements, la formule des probabilités totales donne

$$\mathbb{P}(E_{k+1,j}) = \sum_{l=0}^{n} \underbrace{\mathbb{P}_{E_{k,l}}(E_{k+1,j})}_{=0 \text{ si } l \neq j+1} \mathbb{P}(E_{k,l}) = \mathbb{P}_{E_{k,j-1}}(E_{k+1,j}) \mathbb{P}(E_{k,j-1}) + \mathbb{P}_{E_{k,j+1}}(E_{k+1,j}) \mathbb{P}(E_{k,j+1})$$

ce qui, avec la question précédente donne bien

$$\mathbb{P}(E_{k+1,j}) = \frac{n-j+1}{n} \mathbb{P}(E_{k,j-1}) + \frac{j+1}{n} \mathbb{P}(E_{k,j+1})$$

Pareillement, on obtient

$$\mathbb{P}(E_{k+1,0}) = \frac{1}{n} \mathbb{P}(E_{k,1}) \text{ et } \mathbb{P}(E_{k+1,n}) = \frac{1}{n} \mathbb{P}(E_{k,n-1})$$

Devoir Maison 3/4

Q35. La question précédente, interprétée avec les vecteurs Z_k donne $Z_{k+1} = \frac{1}{n} A_n Z_k$ et donc, par une récurrence immédiate,

$$\boxed{Z_k = \frac{1}{n^k} A_n^k Z_0}$$

Q36. Pour chaque boule j avec $j \in [\![1,n]\!]$, on note X_j la variable aléatoire de Bernoulli égale à 1 si elle se trouve au départ dans U_1 et 0 sinon. Alors $N_0 = X_1 + \cdots + X_n$ (nombre total de boules dans U_1). Comme on suppose que les affectations des boules se font indépendamment et équiprobablement, les X_j sont indépendantes et de paramètre $\frac{1}{2}$. On sait alors que N_0 suit la loi binomiale $\mathcal{B}(n,1/2)$ de sorte que pour tout $k \in [\![0,n]\!]$, $\mathbb{P}(N_0 = k) = \frac{1}{2^n} \binom{n}{k}$:

$$\pi = \frac{1}{2^n} \left(\binom{n}{k} \right)_{k \in \llbracket 0, n \rrbracket}$$

Q37. D'après la question Q30, π est un vecteur propre de A_n pour la valeur propre n donc $\frac{1}{n}A_n\pi=\pi$. Mais on a vu que pour tout $k\in\mathbb{N}$, $Z_{k+1}=\frac{1}{n}A_nZ_k$. Comme $Z_0=\pi$, on a bien pour tout $k\in\mathbb{N}$, $Z_k=\pi$ donc

$$N_k$$
 a la même loi que N_0

Q38. Un sens vient d'être fait. Réciproquement, supposons qu'il existe π' une loi de probabilité ayant la propriété suivante : si N_0 suit la loi π' , alors toutes les variables N_k suivent la loi π' .

On a donc $Z_0=\pi'$ et $Z_1=\pi'$ donc $\frac{1}{n}A_n\pi'=\pi'$ donc $\pi'\in \mathrm{Ker}(A_n-nI_{n+1})$. D'après la question **Q30**, cet espace est de dimension 1 et engendré par π donc il existe un réel α tel que $\pi'=\alpha\pi$.

Mais π et π' sont des lois de probabilité donc la somme de leurs coordonnées vaut 1. On a donc

$$1 = \sum_{j=0}^{n} \pi'_{j} = \sum_{j=0}^{n} \alpha \pi_{j} = \alpha \sum_{j=0}^{n} \pi_{j} = \alpha$$

Ainsi, $\alpha=1$ donc $\pi'=\pi$. On a donc bien montré que

 π est l'unique loi de probabilité telle que : si N_0 suit la loi π , alors toutes les variables N_k suivent la loi π

Devoir Maison 4/4