Programme de colle n° 19, quinzaine 10

spé PC 2023-2024

Déroulement d'une colle :

• Au début de colle, une question de cours sera systématiquement posée: Tout énoncé de proposition ou définition doit être particulièrement précis.

Ce sera soit une <u>définition</u>, soit <u>propriété</u> soulignée, ou une <u>formule</u> encadrée dont les hypothèses précises permettant de l'utiliser doivent être connues.

ch. XII: Espaces vectoriels normés, limites et continuité

1) Normes

- **Norme** sur un e.v.n.. Espace vectoriel normé $(E, || \cdot ||_E)$.
- Définition (formules) des <u>normes usuelles</u> $\| \cdot \|_1, \| \cdot \|_2, \| \cdot \|_{\infty}$ sur $E = \mathbb{R}^n$.
- <u>Produit scalaire</u>, norme associée à un produit scalaire, sur un espace préhilbertien réel.
- exemple $(M,N) \longmapsto \operatorname{Tr}(M^TN)$ est un produit scalaire sur $E = \mathcal{M}_n(\underline{\mathbb{R}})$
 - $M \longmapsto \sqrt{\mathrm{Tr}(M^T M)}$ |a norme associée.
- exemple $\| \|_1$ et $\| \|_{\infty}$ sur $E = \mathcal{C}([a,b],\mathbb{R})$.
- <u>Equivalence de normes</u>. En dimension finie, toutes les normes sont équivalentes [ADMIS].

[niveau \star] justifier à l'aide d'une suite (f_n) de fonctions que $\| \cdot \|_1$ et $\| \cdot \|_{\infty}$ ne sont pas équivalentes sur $E = \mathcal{C}([a,b],\mathbb{R})$.

- Distance associée à une norme sur un e.v.n..
- <u>Boule fermée</u>, <u>Boule unité fermée</u>, <u>Boule ouverte</u>.

 les étudiants doivent savoir dessiner les boules unités sur \mathbb{R}^2 pour les normes usuelles $\| \ \|_1, \ \| \ \|_2, \ \| \ \|_{\infty}$
- Partie bornée de $(E, || \cdot ||_E)$
- <u>Suite bornée</u> $(V_n)_{n\geq 0}$ de vecteurs de $(E, \| \|_E)$.
- <u>Fonction bornée</u> $f : \Delta \to F$, de Δ partie de $(E, \| \|_E)$ vers $(F, \| \|_F)$.
- limite d'une suite vectorielle, opérations usuelles.

[pour tous]

 (V_n) converge vers L dans E ssi : $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N}; \ \forall n \geq n_0, \|V_n - L\|_E \leq \varepsilon$

2) Limites, continuité

N.B. On se limitera à des fonctions de deux (voire trois) variables, à valeurs réelles ou vectorielles, en dimension finie.

- Point adhérent
- <u>Limite d'une fonction</u> en un point adhérent
 Critère séquentiel.

à venir : partie ouverte, intérieur, continuité théorème des bornes atteintes, propriétés topologiques des ouverts et des fermés, adhérence, convexes Quelques points [preuves] signalées en crochet gras colorié sont exigibles de tous les étudiants.

Quelques [preuves*] signalées en crochet gras colorié sont exigibles des étudiants qui ont une compréhension du cours plus avancée.

• Vous passez ensuite aux exercices.

ch. XI: Intégrales à paramètre

 Méthode d'étude de l'intégrabilité d'une fonction sur un intervalle : ensemble de continuité, techniques de comparaison (~, o, O) en les bornes impropres.

les étudiants doivent réviser le chapitre sur les intégrales généralisées et savoir étudier la convergence d'une intégrale généralisée

- <u>Théorème de continuité</u> d'une intégrale à paramètre [Admis, preuve non exigible]. Soient A et I deux intervalles de \mathbb{R} , et $f: A \times I \longrightarrow \mathbb{K}, \ (x,t) \longmapsto f(x,t)$ telle que :
 - i) pour tout $x \in A$, $f_{x,\bullet}: I \longrightarrow \mathbb{K}$, $t \longmapsto f(x,t)$ est continue par morceaux sur I;
 - ii) pour tout $t \in I, \ f_{\bullet,t}: I \to \mathbb{K}, \ x \mapsto f(x,t)$ est **continue** sur A:
 - iii) il existe une fonction φ : $I \longrightarrow \mathbb{R}$ continue par morceaux, positive et intégrable sur I telle que :

$$\forall (x,t) \in A \times I, |f(x,t)| \le \varphi(t)$$

Alors
$$G:A\longrightarrow \mathbb{K},\ x\longmapsto \int_I f(x,t)\ \mathrm{d}t$$
 est continue sur $A.$

Généralisation au cas de domination (locale compacte) sur tous les segments d'un intervalle.

Théorème de dérivation d'une intégrale à paramètre [Admis, preuve non exigible].

Généralisation au cas de domination de $\left|\frac{\partial f}{\partial x}\right|$ sur des ensembles du type $[a,b] \times J$

— Exemple de la fonction Γ d'Euler

$$\Gamma: x \longmapsto \int_0^{+\infty} t^{x-1} \mathrm{e}^{-t} \, \mathrm{d}t$$
. N.B.: tous doivent savoir montrer la continuité ou la classe \mathcal{C}^1 en exercice

- <u>Théorème de dérivations successives</u> d'une intégrale à paramètre, pour obtenir la classe \mathcal{C}^k pour $k \in \mathbb{N}$. [Admis, preuve non exigible].
- Théorème de convergence dominée à paramètre continu Soient A et I deux intervalles de \mathbb{R} , a une borne de A, et $f:A\times I\longrightarrow \mathbb{K},\; (x,t)\longmapsto f(x,t)$ telle que :
 - i) Pour tout $t \in I$, $f(x,t) \xrightarrow[x \to a]{} \ell(t)$
 - ii) Pour tout $x\in A,\,t\longmapsto f(x,t)$ et $t\longmapsto \ell(t)$ sont continues par morceaux sur I
 - iii) il existe une fonction $\varphi:I\longrightarrow \mathbb{R}$ $\underline{\mathbf{int\'egrable}}$ sur I telle que :

$$\forall \ (x,t) \in A \times I, \ |f(x,t)| \le \varphi(t)$$