Thermo C7 : Machines thermiques

Soit une machine ditherme de sources chaude à T _c et froide à T _F			
Question		Réponse	
Faire le schéma de la machine			
Etablir l'inégalité de Clausius			
Qu'appelle-t-on machine de Carnot ? Quelle est le cycle décrit par l'agent thermique ?			
Donner la définition générale du rendement (ou de l'efficacité)			
Cas d'un moteur	Donner les signes de : • W • Q _C • Q _F	Donner l'expression du rendement en fonction de : • W, Q_C et ou Q_F . • T_F et T_C dans le cas d'un fonctionnement réversible.	
Cas d'une machine frigorifique	Donner les signes de : • W • Q _C • Q _F	Donner l'expression de l'efficacité en fonction de : • W, Q _C et ou Q _F . • T _F et T _C dans le cas d'un fonctionnement réversible.	

Cas d'une pompe à chaleur	Donner les signes de : • W • Q _C • Q _F	Donner l'expression de l'efficacité en fonction de : • W, Q_C et ou Q_F . • T_F et T_C dans le cas d'un fonctionnement réversible.
Enoncer le 1er principe pour un fluide en écoulement en précisant les conditions de validité.		