Théorème du moment cinétique

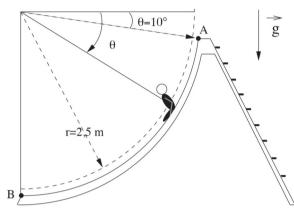
1. Ordres de grandeur ©

- 1) Donner l'ordre de grandeur du moment cinétique de la terre par rapport au centre du soleil dans son mouvement de rotation autour de celui-ci.
- 2) Dans le modèle de Bohr, le mouvement de l'électron autour du noyau est assimilé à un mouvement circulaire et uniforme de centre O confondu avec le noyau. La trajectoire de rayon r_0 = 53pm est parcourue à la fréquence f=6,6.10 15 Hz. Calculer le moment cinétique de l'électron.

2. Toboggan ©©

On se place dans le référentiel terrestre. Un enfant, que l'on assimilera a un point matériel M de masse $m=40\ kg,$ glisse sur un toboggan décrivant une trajectoire circulaire de rayon r =2,5 m. L'enfant, initialement en A, se laisse glisser (vitesse initiale nulle) et atteint le point B avec une vitesse V_B . On supposera le référentiel terrestre galiléen et les frottements négligeables.

- 1) A l'aide du théorème du moment cinétique, établir l'équation différentielle vérifiée par $\theta(t)$.
- 2) A partir de l'équation précédente, exprimer la vitesse en fonction de θ . Calculez la vitesse V_B de l'enfant en B.
- 3) Retrouver la vitesse V_B par un calcul direct.



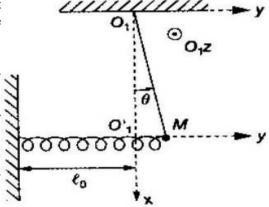
3. Oscillations d'une masse ©©©

Un point matériel M de masse m est relié à un fil inextensible de longueur L et de masse négligeable, ainsi qu'à un ressort horizontal de raideur k et de longueur au repos l_0 . Le fil est vertical lorsque le point matériel se trouve au repos en O'_1 .

On suppose des petites oscillations quasi horizontales du point M tel que $O'_{1}M$ << L.

La position du point M est repérée par l'angle d'inclinaison $\theta(t)$ du pendule par rapport à la verticale ($\theta(t)$ est supposé faible)

Établir l'équation du mouvement en utilisant le théorème du moment cinétique appliqué en O_1 . En déduire la période T_0 des petites oscillations autour de la position d'équilibre.



4. Pendule électrostatique ©©

Un pendule électrostatique est constitué d'une boule de polystyrène expansé recouverte d'une feuille d'aluminium et suspendue à une potence par un fil de masse négligeable.

La boule est préalablement chargée avec une charge électrique $Q = 2,3.10^{-4}$ C. L'ensemble est placé entre deux plaques de cuivre planes et parallèles soumises à une différence de potentiel g telle qu'elles génèrent un champ électrique uniforme $\vec{E} = E \vec{u}_v$ avec $E = 500 \text{ V.m}^{-1}$.

La longueur du pendule est $OM = R = 10 \ cm$ et la masse de la boule assimilée à un point M est $m = 20 \ g$. L'accélération de la pesanteur est $g = 9.8 \ m.s^{-2}$.

- 1) Représenter les forces agissant sur la boule.
- 2) Établir l'équation différentielle du mouvement en θ grâce au le théorème du moment cinétique en O appliqué à M.
- 3) En déduire la position d'équilibre θ_e du pendule.
- 4) On écarte le pendule légèrement de sa position d'équilibre. Déterminer la pulsation ω_{θ} des oscillations puis calculer sa période T_{θ} .

On admettra que pour $|\varepsilon| << \theta_e$, on a $\cos(\theta_e + \varepsilon) \approx \cos(\theta_e) - \varepsilon \sin(\theta_e)$ et $\sin(\theta_e + \varepsilon) \approx \sin(\theta_e) + \varepsilon \cos(\theta_e)$.

$$\underbrace{Rep} : tan \ \theta_e = (QE)/mg \ et \ T_0 = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{R}{\left[1 + \left(\frac{QE}{mg}\right)^2\right]} g \cos \theta_e}$$