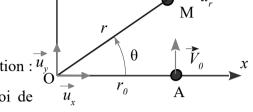
Correction TD

1. Force centrale en $\frac{1}{r^4}$

- 1. Pour que la force soit attractive, il faut que K < 0.
- 2. $\vec{L}_O = O\vec{M}_0 \wedge m\vec{V}_0 = mr_0V_0\vec{u}_z$, or $\vec{L}_O = mC\vec{u}_z$ donc $C = r_0V_0$
- 3. On peut utiliser les coordonnées polaires car le mouvement est plan.
- 4. (ci-contre)

5.

a) En coordonnées polaires : $\vec{v} = \dot{r} \vec{u_r} + r \dot{\theta} \vec{u_\theta}$, on en déduit l'accélération : $\vec{u_\theta} = (\ddot{r} - r \dot{\theta}^2) \vec{u_r} + (2 \dot{r} \dot{\theta} + r \ddot{\theta}) \vec{u_\theta}$. De plus $\vec{F} = K \frac{m}{r^3} \vec{u_r}$. D'après La $2^{\rm ème}$ loi de



Newton : $m\vec{a} = \vec{F}$ d'où en ne gardant que la composante suivant \vec{u}_r :

$$m(\ddot{r}-r\dot{\theta}^2)=K\frac{m}{r^3}$$
 de plus $r^2\dot{\theta}=C$ donc $r\dot{\theta}^2=\frac{C^2}{r^3}$ d'où : $\frac{d^2r}{dt^2}-\frac{K+C^2}{r^3}=0$.

b) On détermine dans un premier temps l'énergie potentielle dont dérive \vec{F} . $\frac{dE_P}{dr} = -F(r) = \frac{-Km}{r^3}$ D'où $E_P = \frac{1}{2} \frac{Km}{r^2}$ en posant la constante d'intégration nulle.

Dans un second temps on exprime l'énergie cinétique en utilisant les coordonnées polaires et la constante des aires : $E_C = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} m \frac{\dot{C}^2}{r^2}$. On en déduit : $E_m = E_C + E_p = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} m \frac{\dot{C}^2}{r^2} + \frac{1}{2} \frac{Km}{r^2}$.

Or $E_m = cste$ car le point matériel est soumis à une force conservative. Donc $\frac{dE_m}{dt} = 0$ d'où :

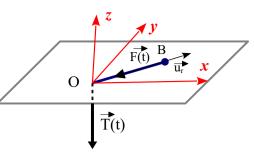
$$\frac{d^2r}{dt^2} - \frac{K+C^2}{r^3} = 0$$

6. Si la trajectoire est circulaire r = cste donc $\frac{d^2r}{dt^2} = \frac{K + C^2}{r^3} = 0$ donc $C^2 = -K$ donc $C = \pm \sqrt{-K}$

2. Bille sur un plateau

1) On se place dans le référentiel lié au plateau $R(O, \vec{u}_x, \vec{u}_y, \vec{u}_z)$, le système étudié est la bille B.

Bilan des forces : Le poids : $\vec{P} = -mg \vec{u}_z$; La réaction du support : $\vec{R} = R\vec{u}_z$; la force: $\vec{F}(t) = F(t)\vec{u}_r$ (F(t) <0). Comme il n'y a pas de mouvement suivant \vec{u}_z , d'après la $2^{\text{ème}}$ loi de Newton $\vec{P} + \vec{R} = \vec{0}$. On en déduit que la résultante des forces



 $\vec{P} + \vec{R} + \vec{F}(t) = \vec{F}(t)$

Cette force est en permanence dirigée vers O donc le mouvement est un mouvement à force centrale.

2) Comme le mouvement est un mouvement à force centrale, $C = l^2 \dot{\theta}$ est une constante du mouvement (la démonstration n'est pas demandée). On peut exprimer C grâce aux conditions initiales d'où : $C = l^2(t=0)\dot{\theta}_0 = a^2\omega_0$ d'où $a^2 \omega_0 = l^2 \dot{\theta} = (a - bt)^2 \frac{d\theta}{dt}$

Par séparation des variables, on obtient : $\frac{a^2 \omega_0 dt}{(a-bt)^2} = d\theta \quad \text{d'où} \quad \int_0^t \frac{a^2 \omega_0 dt}{(a-bt)^2} = \int_{\theta(0)}^{\theta(t)} d\theta \quad \text{d'où} \quad \left[\frac{a^2 \omega_0}{b(a-bt)} \right]_0^t = [\theta]_{\theta(0)}^{\theta(t)} \quad \text{d'où}$

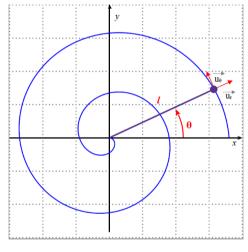
$$\frac{a^2\omega_0}{b(a-bt)} - \frac{a\omega_0}{b} = \frac{a^2\omega_0 - a\omega_0(a-bt)}{b(a-bt)} = \theta(t) - \theta(0) \stackrel{\text{d'où}}{=} \frac{a\omega_0 t}{a-bt} = \theta(t) - \theta(0)$$
(1).

Par la suite, on pose $\theta(t) = \theta$ et $\theta(0) = \theta_0$

Pour obtenir l'équation de la trajectoire, il faut éliminer le temps, on sait que l=a-bt d'où $t=\frac{a-l}{t}$ d'où en remplaçant le temps dans (1):

$$\frac{a\omega_0(\frac{a-l}{b})}{a-b(\frac{a-l}{b})} = \frac{a\omega_0(a-l)}{bl} = \theta - \theta_0 \text{ d'où } a\omega_0(a-l) = (\theta - \theta_0)bl \text{ d'où }$$

 $a \omega_0(a-l) = (\theta - \theta_0) b l \text{ d'où } l((\theta - \theta_0) b + a \omega_0) = a^2 \omega_0 \text{ d'où l'équation de}$ la trajectoire : $l(\theta) = \frac{a^2 \omega_0}{a \omega_0 + b (\theta - \theta_0)}, \text{ c'est l'équation d'une spirale}$



(ci-contre avec $\theta_0=0$).

3) On applique le théorème de l'énergie cinétique à la bille entre l'instant t=0 et l'instant $t=\tau$: $E_{C}(\tau) - E_{C}(0) = W(\vec{F}) = W_{op}$. Comme le fil est de masse négligeable, la tension exercée par l'opérateur est égale à la force \vec{F} .

En coordonnées polaires $\overrightarrow{OB} = l \vec{u}_r = (a - bt) \vec{u}_r$ d'où $\vec{v} = -b \vec{u}_r + (a - bt) \dot{\theta} \vec{u}_{\theta}$ or $C = l^2 \dot{\theta} = a^2 \omega_0$ d'où

$$l\dot{\theta} = \frac{a^2\omega_0}{l} = \frac{a^2\omega_0}{a - bt} \text{ d'où } \vec{v} = -b\vec{u}_r + \frac{a^2\omega_0}{a - bt}\vec{u}_\theta \text{ d'où } v^2 = b^2 + \frac{a^4\omega_0^2}{(a - bt)^2} \text{ d'où }$$

$$E_{C}(\tau) - E_{C}(0) = \frac{1}{2} m \left[b^{2} + \frac{a^{4} \omega_{0}^{2}}{l^{2}(\tau)} - \left(b^{2} + \frac{a^{4} \omega_{0}^{2}}{a^{2}} \right) \right] d'où W_{op} = \frac{1}{2} m a^{2} \omega_{0}^{2} \left(\frac{a^{2}}{l^{2}(\tau)} - 1 \right)$$

3. Modèle de Bohr de l'atome d'hydrogène (1913)

a) L'électron (M) est soumis à la force centrale $\vec{f} = \frac{-e^2}{4\pi\epsilon_0} \frac{1}{r^2} \vec{u_r}$ de la part du proton (O). Schéma ci-contre.

La trajectoire est circulaire de rayon r. En coordonnées polaires $\overrightarrow{OM} = r\overrightarrow{u_r}$ et $\overrightarrow{v} = r \dot{\theta} \overrightarrow{u_\theta} = v \overrightarrow{u_\theta}$ ainsi le moment cinétique de l'électron par rapport à O est : $\overrightarrow{L_0} = \overrightarrow{OM} \wedge m \overrightarrow{v} = mrv u_z$ d'où son module : $|\overrightarrow{L_0}| = mrv = n \frac{h}{2\pi}$

- d'où $v = n \frac{h}{2\pi mr}$. Cette expression montre que le module de la vitesse est constant, d'où le mouvement circulaire uniforme.
- b) On exprime dans un premier temps l'accélération en coordonnées polaires en tenant compte du fait que r et $\dot{\theta}$ sont des constantes : $\vec{a} = -r \dot{\theta}^2 \vec{u_r} = \frac{-v^2}{r} \vec{u_r}$. D'après la $2^{\text{ème}}$ loi de Newton : $\vec{f} = m \vec{a}$ d'où $\frac{-e^2}{4\pi \epsilon_0} \frac{1}{r^2} \vec{u_r} = \frac{-v^2}{r} \vec{u_r}$ d'où $v^2 = \frac{e^2}{4\pi \epsilon_0 m r}$. D'après

la question précédente, $\frac{v}{nh} = \frac{1}{2\pi mr} \text{ d'où } v^2 = \frac{e^2}{2\varepsilon_0} \times \frac{v}{nh} \text{ d'où } v = \frac{e^2}{2\varepsilon_0 nh}$ (1).

c) $E_M = E_C + E_P = \frac{1}{2} m v^2 - \frac{e^2}{4 \pi \epsilon_0 r}$ or $v^2 = \frac{e^2}{4 \pi \epsilon_0 m r}$ d'où $m v^2 = \frac{e^2}{4 \pi \epsilon_0 r}$ d'où $E_M = \frac{-1}{2} m v^2$ d'après (1) on en déduit que :

 $E_{m} = \frac{-1}{2}m\left(\frac{e^{2}}{2\varepsilon_{0}nh}\right)^{2} = \frac{-me^{4}}{8\varepsilon_{0}^{2}n^{2}h^{2}} \quad \text{L'énergie dépend d'un entier n , on écrit :} \quad E_{n} = \frac{-E_{0}}{n} = \frac{-me^{4}}{8\varepsilon_{0}^{2}n^{2}h^{2}} \quad \text{d'où}$

- $E_0 = \frac{me^4}{8\varepsilon_0^2 h^2}$. L'énergie mécanique de l'électron est négative car il est dans un état lié. L'énergie la plus basse correspond à n=1.
- $E_0 = 13,6 \, ev$

4. Mouvement d'un palet accroché à un ressort

1. Bilan des forces : Le poids : $\vec{P} = -mg \ \vec{u}_z$; La réaction du support : $\vec{R} = R \vec{u}_z$; la force de rappel du ressort : $\vec{F} = -k \, (l - l_0) \vec{u}_r$. Comme il n'y a pas de mouvement suivant \vec{u}_z , d'après la $2^{\rm emc}$ loi de Newton $\vec{P} + \vec{R} = \vec{0}$. On en déduit que la résultante $\vec{R}_{es} = \vec{P} + \vec{R} + \vec{F} = \vec{F}$.

On applique le théorème du moment cinétique au palet : $\frac{d\vec{L}_{\scriptscriptstyle O}}{dt} = \vec{M}_{\scriptscriptstyle O}(\vec{F}) \text{ or } \vec{M}_{\scriptscriptstyle O}(\vec{F}) = \vec{OM} \land \vec{F} = l\vec{u}_r \land (-k(l-l_0))\vec{u}_r = \vec{0}$

d'où $\frac{d\vec{L}_o}{dt} = \vec{0}$ d'où $\vec{L}_o = c\vec{ste}$. On exprime le moment cinétique du palet en coordonnées polaires :

 $\vec{L}_O = \vec{OM} \wedge m \vec{V} = l \vec{u_r} \wedge m (l \vec{u_r} + l \dot{\theta} \vec{u_\theta}) = m l^2 \dot{\theta} \vec{u_z} = m C \vec{u_z}$. Le moment cinétique étant constant, on en déduit que est une constante du mouvement. C s'appelle la constante des aires.

2.1. D'après les conditions initiales $\vec{L_O} = \vec{OM} \wedge \vec{0} = \vec{0}$. A tout moment \vec{OM} et \vec{v} sont colinéaires on en déduit que la trajectoire est une droite.

2.2. Pour déterminer l(t), on applique la $2^{\text{ème}}$ loi de Newton au palet : $m\vec{a} = \vec{R}_{es} = \vec{F}$ or $\vec{a} = \vec{l} \vec{u}_r$ (\vec{u}_r étant fixe) d'où $m\vec{l} = -k(l-l_0)$ équation que l'on peut écrire sous la forme canonique: $\vec{l} + \omega_0^2 l = \omega_0^2 l_0$ où $\omega_0^2 = \frac{k}{m}$. La solution est

du type : $l(t) = A \cos \omega_0 t + B \sin \omega_0 t + l_0$. On détermine A et B grâce aux conditions initiales :

A t=0, $l(0)=1,2l_0$ d'où $A=0,2l_0$ et $v(0)=\dot{l}(0)$ d'où B = 0.

Finalement: $l(t) = l_0(1 + 0.2\cos\omega_0 t)$. $l_{max} = 1.2 l_0$ et $l_{min} = 0.8 l_0$. Finalement $0.8 l_0 < l(t) < 1.2 l_0$

3.1. $\vec{L}_O = O\vec{M}_0 \wedge \vec{V}_0 = l_1 \vec{u}_x \wedge m l_1 \omega_1 \vec{u}_y = m l_1^2 \omega_1 \vec{u}_z \text{ donc } C = l_1^2 \omega_1$

3.2. $E_{p_{el}} = \frac{1}{2} k (l - l_0)^2$. Au cours du mouvement l'altitude du palet ne varie pas, l'énergie potentielle de pesanteur est constante, il n'y a donc pas lieu d'en tenir compte.

3.3. La résultante des forces est conservative donc E_m est constante. $E_m = E_C + E_{p_{el}}$

D'après les conditions initiales : $E_{m} = \frac{1}{2} m v_{0}^{2} + \frac{1}{2} k (l_{1} - l_{0})^{2} = \frac{1}{2} m (l_{1} \omega_{1})^{2} + \frac{1}{2} k (l_{1} - l_{0})^{2}$

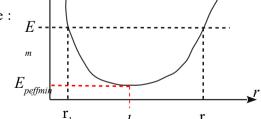
En exprimant la vitesse en coordonnées polaires : $E_m = \frac{1}{2} m (\dot{r}^2 + (r \dot{\theta})^2) + \frac{1}{2} k (r - l_0)^2$

 $E_{m} = \frac{1}{2} m \dot{r}^{2} + \frac{1}{2} m \frac{C^{2}}{r^{2}} + \frac{1}{2} k (r - l_{0})^{2}$

3.4. Par identification avec la relation

précédente :

 $E_{peff} = \frac{1}{2} m \frac{C^2}{r^2} + \frac{1}{2} k (r - l_0)^2$ (courbe ci-contre)



3.5. Au cours du mouvement, $\frac{1}{2}m\dot{r}^2 \ge 0$, on en déduit que $E_m \ge E_{peff}$.

a) $E_{\it peff}$ présentant des asymptotes infinies , pour un valeur de $E_{\it m}$, on voit que le mouvement est borné entre r_1 et r_2 . Le palet ne peut pas s'éloigner indéfiniment du point O.

b) On peut exprimer la vitesse en fonction de la constante des aires : $\vec{v} = \dot{r} \vec{u_r} + r \dot{\theta} \vec{u_\theta} = \dot{r} \vec{u_r} + \frac{C}{r} \vec{u_\theta}$. La composante suivant $\vec{u_r}$ peut s'annuler, c'est le cas en r_1 et r_2 . D'après le graphe r ne peut pas s'annuler et $C \neq 0$, la deuxième composante de la vitesse ne peut pas s'annuler. La vitesse du palet ne peut pas s'annuler au cours du mouvement.

- c) Le palet ne peut pas passer par le point O au cours du mouvement car O est en dehors de la zone où $E_m \ge E_{peff}$.
- a) $C = l_1^2 \omega_1 = r^2 \dot{\theta}$ si le mouvement est circulaire $r = l_1$ est constant, on en déduit que $\dot{\theta} = \omega_1$ est constante donc le mouvement est uniforme.
- b) On applique la 2ème loi de Newton au palet en mouvement circulaire uniforme :

$$m\,\vec{a} = \vec{F} \text{ or dans la base polaire: } \vec{a} = -\,l_1\dot{\theta}^2\,\vec{u_r} = -\,l_1\omega_1^2\,\vec{u_r}\,\,\mathrm{donc} \\ \underline{ - m\,l_1\omega_1^2\,\vec{u_r}} = -\,k\,(\,l_1 - l_0)\,\vec{u_r}\,\,\mathrm{donc} \\ \underline{ - m\,l_1\omega_1^2} = -\,k\,(\,l_1 - l_0)\,\vec{u_r}\,\,\mathrm{donc} \\\underline{ - m\,l_1\omega_1^2} = -\,k\,(\,l$$

donc
$$-ml_1\omega_1^2 = -kl_1 + kl_0$$
 donc $-l_1\omega_1^2 = -\omega_0^2l_1 + \omega_0^2l_0$ d'où $l_1 = \frac{\omega_0^2l_0}{\omega_0^2 - \omega_1^2}$. Pour que l_1 existe il faut que $\omega_1 < \omega_0$.

c) Cette situation correspond au cas où $E_m = E_{peff}$ à tout moment au cours du mouvement. La valeur correspondante de E_{peff} est $E_{peffinin}$.