Devoir surveillé de sciences physiques n°9

(1h30)

Plongée dans un lac

(barème sur 56 points)

Avertissement: tout calcul numérique devra être précédé de l'expression littérale en fonction des données.

Les températures en °C seront eprésentées par la lettre θ , celles en Kelvin par T.

On rappelle que $T(K) = \theta(^{\circ}C) + 273,15$.

1. Pression, force de pression

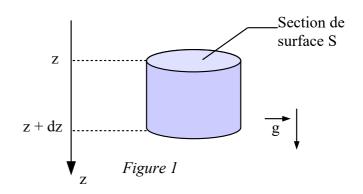
1.1. Variation de pression au sein d'un fluide

L'eau d'un lac constitue un liquide homogène incompressible de masse volumique ρ constante, en équilibre dans le champ de pesanteur uniforme, d'intensité g constante.

On considère à l'intérieur de ce fluide un cylindre fictif de section de surface S et de hauteur dz (voir figure 1).

On admet que la pression dans le fluide ne dépend que de l'altitude z et on la note P(z).

En considérant le bilan des forces extérieures appliquées au fluide contenu dans le volume cylindrique, établir l'expression reliant dP et dz.



1.2. Forces de pression s'exerçant sur la paroi d'un barrage

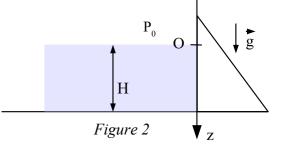
L'eau du lac est retenue par un barrage plan vertical . La paroi du barrage en contact avec l'eau est un rectangle de hauteur H de de largeur L *(figure 2)*.

La surface libre de l'eau (prise à l'altitude z=0) est en contact avec l'atmosphère à la pression P_0 constante.

Données numériques:

$$\rho = 10^3 \, kg.m^{\text{-}3}, \;\; g = 9.81 m.s^{\text{-}2}, \;\; H = 40.0 \; m \;, \;\; L = 100 \; m \;, \; P_0 = 1.01.10^5 \; Pa$$

Ces données numériques restent valables dans tout le problème si besoin.



- a) Déterminer l'expression de P(z) dans le lac en prenant l'axe Oz descendant de la figure 2.
- **b)** Etablir l'expression et calculer la norme de la résultante \vec{F} des forces de pression exercées par l'eau du lac sur la paroi verticale du barrage .

2. Plongée

Un plongeur est chargé d'inspecter le barrage, on s'intéresse à l'aspect respiratoire de la plongée.

Hypothèses d'étude:

En surface ou en plongée, l'air contenu dans l'appareil respiratoire (cage thoracique) présente les caractéristiques suivantes:

- Il est assimilable à un gaz parfait.
- Son volume est V (celui de la cage thoracique du plongeur).
- On suppose ce volume V variable, on note V_m sa valeur maximum.
- Sa pression est égale à la pression environnante (P_0 en surface et P(z) en plongée).
- Sa température est constante.

2.1. Plongée sans bouteille

A l'air libre, le plongeur gonfle ses poumons au maximum $(V=V_m)$ bloque sa respiration et plonge à une profondeur z_1 sans perdre d'air.

Données numériques:

```
\theta_0 = 25.0°C, z_1 = 40m, V_m = 7.00 L et R = 8.31 JK<sup>-1</sup>mol<sup>-1</sup>.
```

Ces données numériques restent valables dans tout le problème.

- a) Calculer le volume V_1 des poumons à la profondeur z_1 .
- **b)** A la profondeur z₁, le plongeur expire la moitié de l'air qu'il avait inspiré avant de plonger. Il remonte ensuite sans lâcher d'air . Quel est alors le volume V' de ses poumons quand il arrive en surface?

2.2. Équipement de plongée autonome

Le plongeur utilise maintenant l'équipement de plongée autonome (bouteille et détendeur) mis au point par l'équipe Cousteau.

Hypothèses concernant la bouteille:

- La bouteille placée sur le dos est à parois indéformables, son volume est V_b.
- Elle contient de l'air et a été initialement gonflée à la température θ_b sous la pression P_b .
- Dans l'eau ou à la surface de l'eau le contenu de la bouteille est ramené à la température constante θ_a environnante. Sa pression devient P_a .

Fonctionnement du détendeur:

- Le détendeur est un système complexe qui délivre la quantité d'air nécessaire à la respiration du plongeur à la pression P(z) locale.
- Le détendeur se bloque lorsque la pression P_b dans la bouteille devient égale à P_f . C'est un signal donné au plongeur pour lui indiquer qu'il est temps de remonter à la surface. Quand $P_b=P_f$, Le plongeur débloque le détendeur pour utiliser le reste du gaz.

La respiration en surface ou en plongée se traduit par:

- une fréquence constante υ des cycles respiratoires
- Un volume moyen V_0 de gaz, à la pression P(z) inspiré puis expiré au cours de chaque cycle à la température constante θ_a environnante.

Données numériques:

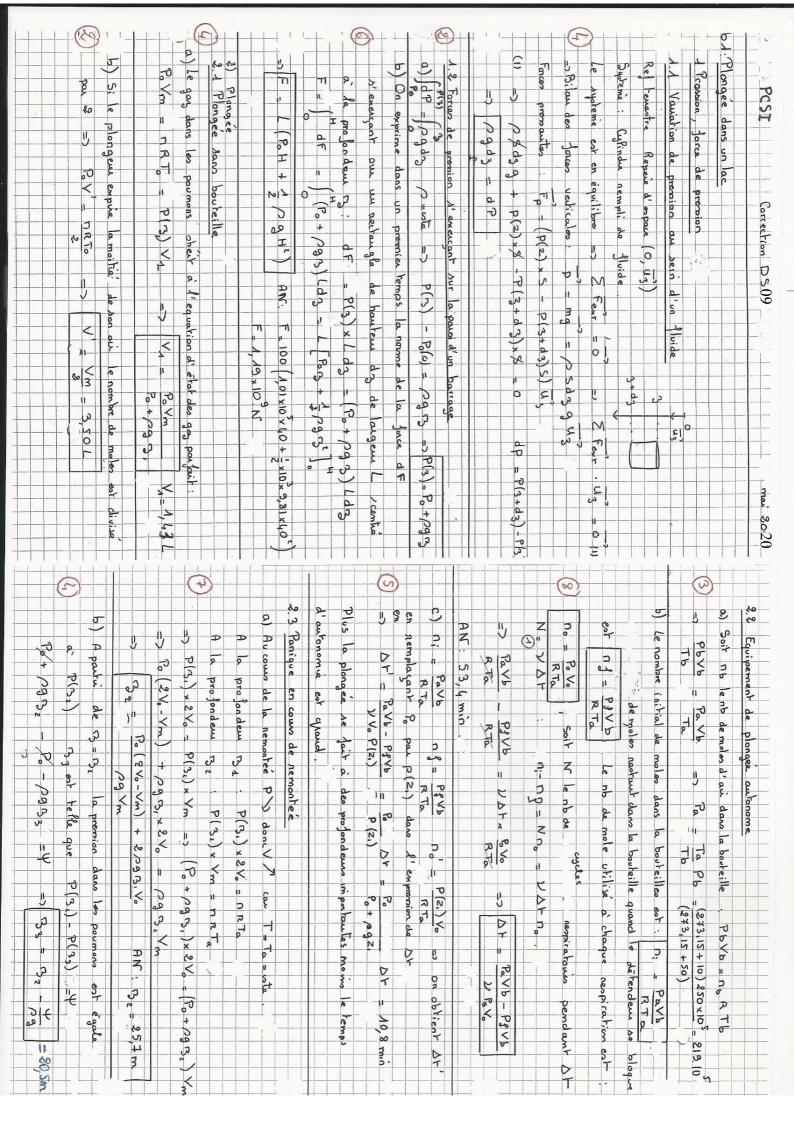
```
\theta_b = 50^{\circ}\text{C}, \theta_a = 10^{\circ}\text{C}, P_b = 250.10^5 \text{ Pa}, P_f = 50.10^5 \text{ Pa}, V_b = 12 \text{ L}, V_0 = 2.5 \text{ L}, z_1 = 40 \text{m et } v = 15 \text{ min}^{-1}.
```

- a) Calculer la pression P_a , de l'air dans la bouteille après que l'air soit revenu à la température ambiante θ_a .
- b) Si le plongeur utilise l'appareil en surface (z=0), exprimer la durée Δt au bout de laquelle le détendeur se bloque en fonction de υ , P_a , P_f , P_0 , V_b et V_0 . (Pour faire ce calcul, il est conseillé d'exprimer successivement le nombre initial n_i de moles d'air dans la bouteille, puis le nombre n_f de moles dans la bouteille quand le détendeur se bloque et le nombre n_0 de moles utilisées à chaque cycle respiratoire). Faire l'application numérique.
- **c)** Avec une bouteille pleine identique, le sportif plonge rapidement à la profondeur z_1 et s'y maintient. Soit $\Delta t'$ la durée au bout de laquelle le détendeur se bloque. Établir la relation entre Δt , $\Delta t'$, P_0 et $P(z_1)$. Calculer $\Delta t'$. Comparer Δt et $\Delta t'$. Conclusion.

2.3. Panique en cours de remontée

On considère maintenant un accident de plongée pouvant intervenir en cas de panique.

- a) Un plongeur non initié se trouve à la profondeur z_1 . Il prend peur , bloque sa respiration , le volume de ses poumons est alors $V=2V_0$, il perd son détendeur et remonte rapidement à la surface sans expirer. Au cours de la remontée, comment varie V? V atteint V_m à la profondeur z_2 . Exprimer z_2 en fonction de V_0 , V_m , z_1 , P_0 , ρ et g puis faire l'application numérique.
- b) Le volume V_m des organes respiratoires est un volume qui ne peut pas être dépassé. Ainsi pour $z < z_2$ il s'établit une surpression entre la cavité pulmonaire et le milieu extérieur . Les poumons subissent des lésions graves (éclatement généralement fatal) lorsque la différence de pression $\Delta P = P(poumons) P(extérieur) > \Psi = 0,5 .10^5$ Pa. Exprimer la profondeur z_3 à laquelle l'accident risque d'arriver en fonction de z_2 , Ψ , ρ et g puis faire l'application numérique.
- c) Quel volume ΔV le plongeur aurait-il du expirer à la profondeur z_1 pour qu'en surface ΔP soit limite et qu'il n'y ait pas d'accident? Exprimer ΔV en fonction de Ψ , V_0 , V_m , z_1 , P_0 , ρ et g puis faire l'application numérique.
- **d)** Le plongeur sans bouteille (en apnée) de la question 2.1 risque t-il l'accident?



(8) donc pour éviter l'accident P(Su) - Po - 0,5 = 4 C) Si le plongem expue DV à la prefendem 3, le volume de ses poumons d) Le volume initial si le plongem n'a pas expiré -> le plongem en apricé 8 ne nisque par d'accident le volume nedevient Vm à posite de By Fg P(34) Vm devient 24, - DN => P(3,) (24, - DV) = n'RTA de la pression extremente, puis en nemontant, ils ne prennant leur poumers gardent la provision Pl34) jusqu'à la suijace il jout P(31)(2V-0V) - P - W DV = 2 V - Vm (++ Po) X plongen sons bouteille nemplit are poumoss en surface En projondem les poumons de nétractent sous l'action 15. 6d + 8 du type précédent => 2V - AV = Vm (++ Pa) DZ, DV = 2, 891 = n'R Ta