Préparation devoir surveillé n°5 sciences physiques

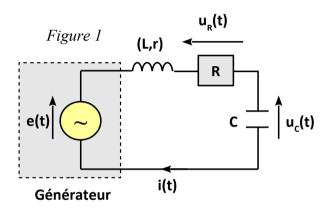
Étude d' une bobine en régime sinusoïdal forcé

Première partie

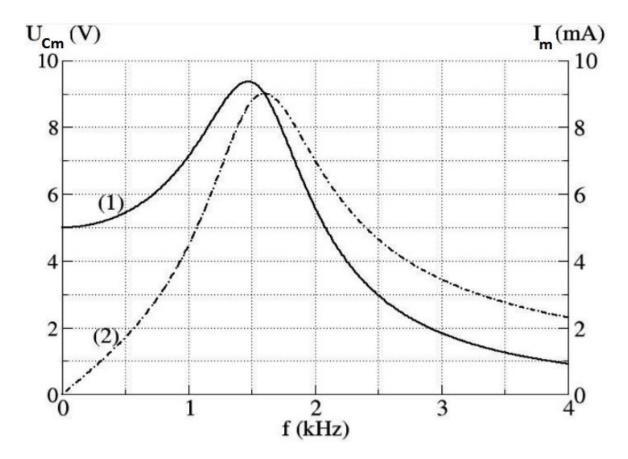
Un générateur sinusoïdal alimente un circuit RLC constitué d'un condensateur de capacité $C=0.1\mu F$ d'une bobine réelle d'inductance L et de résistance r inconnues, placés en série avec une résistance $R=480\Omega$.

Le générateur est un générateur basse fréquence délivrant un signal sinusoïdal de pulsation ω : $e(t) = E \cos(\omega t)$.

L'intensité dans le circuit est de la forme : $i(t) = I_m \cos(\omega t + \varphi_i)$, la tension aux bornes du condensateur : $u_C(t) = U_{Cm} \cos(\omega t + \varphi_C)$ et la tension aux bornes de la résistance $u_R(t) = U_{Rm} \cos(\omega t + \varphi_R)$. Le montage est représenté sur la figure 1.



- **1.** Donner l'expression des amplitudes complexes associées aux tensions e(t), $u_R(t)$ et $u_C(t)$ ainsi que celle associée à l'intensité i(t).
- **2.** Préciser les expressions des impédances complexes de la bobine (L,r), du résistor de résistance R et du condensateur de capacité C.
- **3.** Préciser le comportement limite de ces différents composants en haute et basse fréquence. En déduire qualitativement le comportement des tensions $u_C(t)$ et $u_R(t)$ en haute et basse fréquences.
- **4.** Exprimer l'impédance \underline{Z} du circuit sous la forme : $\underline{Z} = R_0 \left(1 + jQ \left(\frac{\omega}{\omega_0} \frac{\omega_0}{\omega} \right) \right)$. Identifier R_0 , ω_0 et Q en fonction de, L, R, r et C.
- **5.** Donner l'expression théorique de l'amplitude complexe \underline{I} associée à l'intensité du courant traversant le circuit en fonction de R_0 , ω , Q, ω_0 et E.
- **6.** En déduire l'amplitude I_m sous la forme : $I_m(\omega) = \frac{A}{\sqrt{1 + B^2 \left(\frac{\omega}{\omega_0} \frac{\omega_0}{\omega}\right)^2}}$. Préciser A et B en fonction de R_0 , Q et E.
- **7.** Montrer que $I_m(\omega)$ passe par un maximum pour $\omega = \omega_r$. Préciser ω_r et $I_{max} = I_m(\omega_r)$. Calculer $\varphi_i(\omega_r)$ et commenter le résultat obtenu.
- **8.** On appelle bande passante l'intervalle de pulsation $\Delta \omega = \omega_{max} \omega_{min}$ pour laquelle $I_m(\omega) \ge \frac{I_{max}}{\sqrt{2}}$. Montrer que : $\Delta \omega = \frac{\omega_0}{O}$
- **9.** On donne ci-dessous les graphes de $I_m(f)$ et $U_{Cm}(f)$ où f est la fréquence du générateur. L'échelle de gauche est celle de U_{Cm} celle de droite est celle de I_m . Identifier, en justifiant votre choix, les courbes (1) et (2).



- **10.** Déduire de l'expression de \underline{I} celle de l'amplitude complexe \underline{U}_C associée à la tension aux bornes du condensateur, mettre \underline{U}_C sous la forme canonique : $\underline{U}_C = \frac{A'}{1 \left(\frac{\omega}{\omega_0}\right)^2 + j\frac{\omega}{\omega_0 Q}}$ et identifier A' en fonction des données du problème.
- **11.** En déduire l'amplitude $U_{Cm}(\omega_0)$ ainsi que $\varphi_C(\omega_0)$ en fonction Q et E.
- 12. Quelles remarques importantes peut-on faire à propos de la tension aux bornes du condensateur ?
- **13.** Déterminer à partir de ces courbes : la tension du générateur E, la fréquence propre f_0 et le facteur de qualité Q du circuit, les limites de la bande passante et I_{\max} .
- **14.** En déduire les valeurs de r et de L.

Deuxième partie

Le circuit étudié est celui de la figure 1. le résistor et le condensateur sont inchangés ainsi $R=480\Omega$, $C=0,1\mu F$. L'amplitude de la tension délivrée par le générateur est modifiée, elle vaut maintenant E'. La bobine est différente de la précédente, elle est caractérisée par les valeurs L' et r'.

15. Comment peut-on accéder expérimentalement à la mesure de *i*(*t*) avec un oscilloscope?

On réalise l'expérience suivante sur le circuit. À l'aide d'un oscilloscope, on mesure la tension e(t) sur la voie 1 et la tension $U_R(t)$ aux bornes de la résistance R sur la voie 2. On fait varier la fréquence du générateur sinusoïdal et on constate que la voie 2 passe par un maximum pour une fréquence f_I .

- **16.** Interpréter la présence de ce maximum aux bornes de *R* .
- **17.** Présenter sur un schéma les branchements de l'oscilloscope. Le générateur doit-il être à masse flottante ? Expliquer.

On se place dorénavant à la fréquence f_1 .

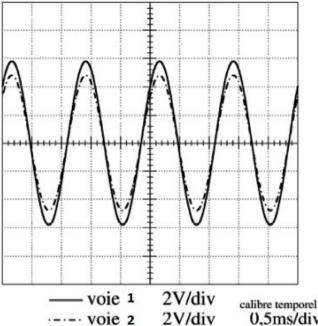
On s'arrange maintenant pour mesurer sur la voie 2 la tension $u_C(t)$ aux bornes du condensateur de capacité C en gardant e (t) sur la voie 1.

18. Les deux oscillogrammes suivants ont été enregistrés :

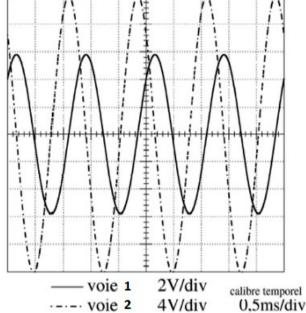
- L'un pour la voie 2 aux bornes de *C*
- L'autre pour la voie 2 aux bornes de R.

Déterminer le déphasage entre la voie 1 et la voie 2 pour chacun des oscillogrammes. Préciser, en justifiant votre choix, à quel composant correspond la voie 2 de chacun des oscillogrammes.

19. En déduire la nouvelle valeur de E' et les valeurs *L*' et *r*' de la nouvelle bobine.



voie 2 2V/div 0,5ms/div ·--- voie 2
Oscillogramme (a) Oscillog



Préparation DS05 Correction (d'après banque agro 2009) $\underline{\underline{U}_{e}} = E$; $\underline{\underline{U}_{C}} = \underline{U}_{Cm} e^{j\varphi_{C}}$; $\underline{\underline{U}_{R}} = \underline{U}_{Rm} e^{j\varphi_{R}}$; $\underline{\underline{I}} = \underline{I}_{m} e^{j\varphi_{i}}$ 1 $\underline{Z_L} = r + jL\omega$; $\underline{Z_R} = R$; $\underline{Z_C} = \frac{1}{iC\omega}$ En basse fréquence : $\underline{Z_L} = r$; $\underline{Z_R} = R$ et $\underline{Z_C} \to \infty$ (interrupteur ouvert) donc $\underline{u_R(t) = R i(t) = 0}$ et $\underline{u_C(t) \to e(t)}$ 3 En haute fréquence : $\underline{Z_L} \to \infty$ (interrupteur ouvert); $\underline{Z_R} = R$ et $\underline{Z_C} \to 0$ (fil) donc $\underline{u_R(t) = R i(t) = 0}$ et $\underline{u_C(t) \to 0}$ $\boxed{ \underline{Z} = (r+R) + j(L\omega - \frac{1}{C\omega}) = (r+R)(1 + j\frac{L\omega_0}{R+r}(\frac{\omega}{\omega_0} - \frac{1}{LC\omega_0\omega})) = R_0(1 + jQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})) }$ Par identification : $\boxed{R_0 = R + r}; \omega_0 = \frac{1}{\sqrt{LC}} \text{ et } \boxed{Q = \frac{L \omega_0}{R + r}} = \frac{1}{R + r} \sqrt{\frac{L}{C}}.$ $I = \frac{E}{Z}$, donc $I = \frac{E}{R_0(1+jQ(\frac{\omega}{\Omega_0} - \frac{\omega_0}{\Omega}))}$ $I_{m} = |\underline{I}| = \frac{\underline{E}}{\sqrt{R_{0}^{2}(1 + Q^{2}(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})^{2})}} = \frac{\underline{E}}{R_{0}\sqrt{(1 + Q^{2}(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})^{2})}} = \frac{\underline{A}}{\sqrt{(1 + B^{2}(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega})^{2})}}.$ Par identification : $A = \frac{E}{R_0}$ et B = Q. Im est maximum quand son dénominateur est minimum, c'est à dire quand : $\omega_r = \omega_0$. On a alors $I_{m}(\omega_{max}) = I_{m}(\omega_{min}) = \frac{E}{R_{0}\sqrt{2}} = \frac{E}{R_{0}\sqrt{1 + O^{2}(\frac{\omega}{\Omega} - \frac{\omega_{0}}{\Omega})^{2}}} \omega_{max \text{ et } \omega_{min} \text{ vérifient l'équation : } \left| \frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega} \right| = \frac{1}{O}$ 8 après résolution on obtient : $\boxed{\omega_{min} = \omega_0 \left(\frac{-1}{2\Omega} + \sqrt{1 + \frac{1}{4\Omega^2}}\right) \mid_{\text{et}} \left[\omega_{max} = \omega_0 \left(\frac{1}{2\Omega} + \sqrt{1 + \frac{1}{4\Omega^2}}\right) \mid_{\text{d'où}} \Delta \omega = \frac{\omega_0}{Q} \right]}$ Théoriquement on a vu que $I_m(0)=0$ on en déduit que : 9 la courbe (1) correspond à $\,U_{\it Cm}\,$ et la courbe (2) à $\,I_{\it m}\,$ $\underline{U_{C}} = \frac{\underline{I}}{jC \, \omega} \, \text{d'où} \, \underline{\underline{U_{C}}} = \frac{\underline{E}}{jC \, \omega \, R_{0} \left(1 + jQ \left(\frac{\omega}{\omega_{0}} - \frac{\omega_{0}}{\omega}\right)\right)} \text{ or } Q = \frac{L \, \omega_{0}}{R_{0}} = \frac{1}{R_{0} C \, \omega_{0}} \, \text{d'où} \, R_{0} C = \frac{1}{Q \, \omega_{0}} \, \text{on en dé-}$ duit 10 $\frac{U_{C}}{j\frac{\omega}{\omega_{0}Q}\left(1+jQ\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{0}}{\omega}\right)\right)} = \frac{E}{1-\left(\frac{\omega}{\omega_{0}}\right)^{2}+j\frac{\omega}{\omega_{0}}} \text{ par identification } A'=E$

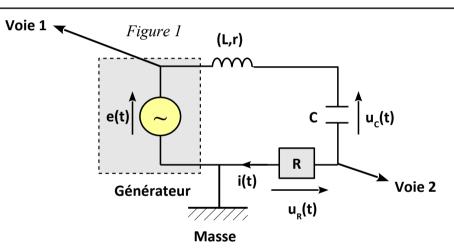
				_
11	$\underline{\underline{U}_{C}}(\omega_{0}) = E \frac{\underline{Q}}{j}$ On en déduit	$U_{Cm} = QE$	et	$\varphi_C = -\frac{\pi}{2}$

- Si Q>>1 la tension aux bornes du condensateur peut devenir très grande pour $\omega = \omega_0$! 12 La résonance aux bornes du condensateur n'a pas lieu en même temps que la résonance d'intensité.
- $U_{Cm}(0) = E = 5V$, $I_m(f_0) = I_{max}$ on en déduit : $f_0 = 1.6 \, kHz$, $U_{Cm}(\omega_0) = QE = 9V$ on en déduit $Q = \frac{9}{5} = 1.8$ $I_{max} = 9.10^{-3} A$ $I_{m}(f_{max}) = I_{m}(f_{min}) = \frac{I_{max}}{\sqrt{2}} = \frac{9.10^{-3}}{\sqrt{2}} = 6.4.10^{-3} A$, on en déduit 13
 - $f_{min}=1,4 \, kHz$ et $f_{max}=2,1 \, kHz$
- $I_{max} = \frac{E}{R_0} = \frac{E}{R + r} \text{ On en déduit } r = \frac{E}{I_{max}} R_{AN} : r = \frac{5}{9.10^{-3}} 480 = 75,5 \Omega$ en déduit $L = \frac{1}{4\pi^2 f_0^2 C} \text{ AN} : L = \frac{1}{4\pi^2 \times 1600^2 \times 0,1.10^{-6}} = 0,099 H$
- Il suffit de visualiser la tension aux bornes de la résistance. **15**
- Sur la voir 2 on visualise la résonance d'intensité pour $f_1 = f_0$. 16

générateur à la résistance. La masse du générateur est la même que celle de l'oscillo, on n'a pas besoin d'un générateur à masse flottante.

17

Il faut connecter la masse du



- Sur l'oscillogramme (a) la voie 1 et la voie 2 sont en phase, la voie 2 correspond à $u_R(t)$. 18 Sur l'oscillogramme (b) la voie 2 est en avance de $\frac{\pi}{2}$ par rapport à la voie 1, la voie 2 correspond à $u_c(t)$.
 - D'après la voie 1 $E'=2,9\times2=5,8$ V . D'après la voie 2 de l'oscillogramme (a) $U_{Rmax}=2,4\times2=4,8$ V or $U_{Rmax}=RI_{max}=\frac{RE'}{R+r'}$ on en déduit $r'=\frac{RE'}{U_{Rmax}}-R=\frac{480\times5,9}{4,8}-480=110$

D'après la voie 2 de l'oscillogramme (b) $U_{Cmax} = QE' = \frac{L' \times 2 \times \pi f_1 E'}{P_1 + P_2}$ d'où

19 $L' = (R + r') \frac{U_{Cmax}}{2 \times \pi f_* E'}$. Pour faire l'application numérique il faut déterminer f_1 .

 $2T_1 = 5 \times 0,5 = 2,5 \, ms$ on en déduit $T_1 = 1,25 \, ms$ d'où $f_1 = \frac{1}{1,25,10^{-3}} = 800 \, Hz$ ainsi

$$L' = (480 + 110) \frac{20}{2 \times \pi 800 \times 5.8} = 0.039 H$$