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Préparation devoir surveillé n°7 sciences physiques

Probléme 1 : Corpuscule dans le champ de pesanteur

Dans le référentiel galiléen du laboratoire supposé galiléen, un projectile A assimilé a un point matériel, est tiré a I’instant
initial dans un plan vertical P, depuis 1’origine O d’un repére cartésien (O s E,: ) EZ), €, donnant le sens de la verticale

ascendante.
Le vecteur vitesse initiale V, de A, de norme V=||Vy||, IT” C
forme un angle 0 avec ’axe OE; (Fig. ci-contre). ¢
On désigne par Z] =—g é; le vecteur champ de pesanteur 1« 2
gw 10m. 572) et on néglige tout frottement. ’_D _ 5
Vo

On considére une cible C placée a la distance d et a une
hauteur 4, dans P,.

N

1. Etablir les équations horaires du mouvement du projectile.

2. En déduire I’équation de la trajectoire.

3. Quelle condition doivent satisfaire V, et @ pour que I’altitude maximale, h,;, atteinte par A vérifie hy,>h ?

A) gh=\/v_0/2 C) v,sin6>vgh
B) VOC059>@ D) v,sin0>+v2 gh
4. Quelle relation v, et 8 doivent-ils satisfaire pour que la cible soit atteinte ?
2
A 297d+dtan9 h Q) gd +dtan 0=h
2v;cos’0 vesin®0
2 2
g;d 2, ~dtanf=h fd ——dtanf=h
2v,cos 6 2v,sin“ 0

5. On fixe V, (jusqu’a la fin de cet exercice), 6 devenant alors le seul paramétre variable. La cible n’est atteinte que lorsque :

K, tan’0—dtan0+K,=0 ou K, et K, sont des coefficients indépendants de 0. Exprimer K .

d’ d’ 2gd’ d’
A)K1:g 2 B) K, = gz C) K= gz D)K1:g 2
2v, v, Vo 4v,
6. Exprimer K,.

2

Ay K,=h+dd B) K,=h o K, =94 o) K,=h-94

2v, v 1%

0 0 0

7. Lacible peut étre atteinte si son altitude / ne dépasse pas une altitude limite h, (d ) Vo)- Exprimer h, (d s VO) :

—ad? 2 d>
o2 e
0 0
B)h(d ):V_g D)h(d v) gd
4 Yol =5 ° 2v§ g

8. La condition précédente étant respectée, combien de trajectoires contiennent la cible ?
A) Une seule trajectoire. B) Deux trajectoires (ou une seule dans un cas limite).

C) Trois trajectoires (ou deux dans un cas limite) D) Une infinité de trajectoires.
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Probléme 2: Chute d’une gouttelette d’eau dans Iair

On consideére les valeurs numériques suivantes pour tout le sujet :
« intensité de la pesanteur : g = 10 m.s? ; viscosité dynamique de ’air : 5,=2.107 Pa.s ;
« viscosité dynamique de I’eau : #.= 1.107 Pa.s ; masse volumique de I’air : p,= 1 kg.m ;

+ masse volumique de I’eau : p,= 1.10° kg.m™ .

4
+ Volume V d’une sphére de rayon R : V :5” R’ ; Surface S d’une sphére de rayon R : S=4 71 R’

Les résultats des applications numériques sont attendus avec seulement 1 chiffre significatif.

Un nuage est constitué d’une grande quantité de gouttelettes d’eau en suspension dans 1’air. Il se forme par condensation de la
vapeur d’eau naturellement présente dans 1’atmosphére lorsque les conditions météorologiques sont adéquates.

Ces gouttelettes en suspension grossissent en se réunissant sous 1’effet des courants atmosphériques jusqu’a atteindre une taille
critique, au-dela de laquelle elles tombent sous forme de pluie. Dans cette partie, nous allons étudier la chute d’une gouttelette
d’eau a I’aide de deux modélisations pour 1’atmosphére : le cas d’une atmosphére séche, puis le cas d’une atmosphére humide.

1. Cas d’une atmospheére seche

Dans un premier temps, on étudie la chute d’une gouttelette d’eau sphérique de masse volumique p. et de rayon constant R =
0,2 mm dans une atmosphere séche, constituée d’air de masse volumique p, et de viscosité dynamique #,.. On néglige tout
phénoméne d’évaporation au cours de cette chute. A ’instant t=0, on suppose que la gouttelette quitte le nuage d’ou elle
provient, sans vitesse initiale. Elle est alors soumise a trois forces au cours de sa chute :

« son poids P ;
« la poussée d’Archimeéde exercée par I’air P , ;
« une force de frottement fluide exercée par 'air que ’on modélise sous la forme : f=—621n,RV (t) avec _\;(t) le vecteur

vitesse de la gouttelette.

On définit ’axe (OZ ) vertical descendant, comme représenté sur la Figure 1.

nuage 0
Figure 1 : Chute d’une gouttelette

d’eau de rayon constant R dans I ?I{ﬂ_ -\‘|

une atmospheére séche. ~— 9

sol
1. Exprimer la norme de la poussée d’ Archimede subie par la gouttelette en fonction des données de 1’énoncé.

2. Calculer numériquement le rapport, en norme, de la poussée d’Archiméde sur le poids de la gouttelette, puis justifier qu’il
est possible de négliger la poussée d’ Archiméde dans cette modélisation.

Dans la suite, on négligera ainsi toujours la poussée d’ Archiméde.

3. Etablir I’équation différentielle vérifiée par la composante v(t) de la vitesse de la gouttelette projetée sur 1’axe (OZ)
vertical descendant.

4. A partir de cette équation différentielle, définir un temps caractéristique t en fonction de R , p. et 7,, puis calculer sa valeur
numérique.

5. En déduire I’expression de v (t ) en fonctionde g, tett.

6. Calculer numériquement la vitesse limite vers laquelle tend la gouttelette au cours de sa chute.



1.2. Cas d’'une atmospheéere humide

On étudie maintenant la chute d’une gouttelette d’eau sphérique de masse volumique p. dans une atmosphere humide,
principalement constituée d’air de masse volumique p, et de viscosité dynamique 7, . L humidité du milieu fait croitre le
rayon r(t ) de la gouttelette au cours de sa chute, et on note m(t ) sa masse. A ’instant t =0, on suppose que la gouttelette

quitte le nuage d’ou elle provient, sans vitesse initiale et avec un rayon initial I'y. En supposant que la poussée d’Archimede est
toujours négligeable, la gouttelette est alors soumise a deux forces au cours de sa chute :

« son poids P ;

- une force de frottement fluide exercée par I’air que I’on modélise sous la forme : f=—67n,r ( t) \7(t ) avec V ( t) le vecteur
vitesse de la gouttelette.

On définit ’axe (OZ ) vertical descendant, comme représenté sur la Figure 2.

Figure 2 : Chute d’une gouttelette nuage 0
d’eau de rayon variable r (t) dans

une atmosphére humide.

sol

7. En supposant que 1’augmentation du volume V de la gouttelette au cours du temps est proportionnelle a sa surface S, soit

dv .. o . .
——=k S avec k une constante caractéristique de I’humidité du milieu, que 1’on ne cherchera pas a exprimer. Montrer que

dt

son rayon peut alors s’exprimer sous la forme :

r(t)=ry+kt
) dm .
8. Exprimer E en fonction de p., 7y, ket t.

Dans le cas d’un systéme de masse variable m(z), on peut montrer que la 2°™ loi de Newton reste valable dans un référentiel

: . dv dimv . dv -
galiléen a condition de remplacer le terme [m E} par [%] , ce qui donne en développant : [m —t+—v} .

9. Montrer que I’équation différentielle vérifiée par la vitesse v ( t) de la gouttelette projetée sur I’axe (OZ) vertical descendant
peut alors s’écrire sous la forme :

dv A B
—+ +
dt |ro+kt (r0+kt)2

vit]=g

avec A et B des constantes que 1’on exprimera en fonction de p., 77, et k .

Quelques instants aprés le début de sa chute, le rayon de la gouttelette devient suffisamment important pour que le terme

B
7 de I’équation différentielle soit négligeable devant le terme
(r0+ k t)

rotkt

10. En prenant en compte cette simplification, résoudre 1’équation différentielle obtenue en résolvant d’abord 1’équation sans
second membre, puis en cherchant une solution particuliére de 1’équation compléte sous la forme d’une fonction affine, afin
d’en déduire I’expression de v(t) en fonction de g, 'y, k et t.

Lorsque le rayon de la gouttelette d’eau dépasse quelques millimétres, il n’est plus réaliste de considérer que la forme de celle-
ci est encore sphérique. En effet, la trainée aérodynamique donne alors une forme de disque incurvé a la gouttelette d’eau, qu’il
serait nécessaire de prendre en compte.

11. Grace a votre culture scientifique, donner le nom de 1’énergie par unité de surface qui est responsable de la forme sphérique
des gouttelettes d’eau de petites tailles.



Correction préparation devoir surveillé n°7 sciences physiques

Probléme 1 : Corpuscule dans le champ de pesanteur (d’aprés ENAC 2024)

1. Le repere d'espace est R(O L€, E;) ; le systéme ¢étudié est le projectile A. Les coordonnées adaptées sont les
coordonnées cartésiennes.
., . — >__ .= . —> > e = o~ =
Vecteurs cinématiques : OAZxE:+zE; , vV=xe tze 6 a=xe tze,
—
Bilan des forces: P=—mg €,
3 . -> . . . . .
2" loi de Newton: mg= P . Par projection sur les axes on obtient: m x=0 (1)et 2=—g (2).

D'aprés les conditions initiales: x(0)=0; z(0)=0; %(0)=v,cos0 et 2(0)=v,sin0 .

z(t)=7gt2+(vosin9)t

2)

Par intégration des équations (1) et (2) on obtient: | X (t ) = ( v,c0s0 )t (1) et

2. De (1) on tire I = . En remplagant dans (2').On obtient I'équation de la trajectoire:

v, cos 6

1 x?
z:—igzi+tan9x i

2 .
vysinBcos0

dz X
3. Le point M d’altitude hyest tel que (—) =0=—g %Han@ soit x, = d’ou en remplagant

dx |y vocos 0 g
1 vgsin’Bcos 0 b= 1 vesin’® vgsin’O
dans I’équation de la trajectoire : _Eg gz V(Z) sinOcos@ Soit “MT oy o + o
h,= — +tan———
vycos 0 g
B vesin’0
drou| #y=""5 g | La condition h>h,, conduit a v,sin 0>+/2 gh|. réponse D.
4. 11 suffit de remplacer z par h et x par d dans 1’équation de la trajectoire d’ou : h= — 5 2 - + ( tan 9) d réponse A.
2v,cos 0
2, 1—cos’6 1 —gd’ 2
5. Puisque tan 0= 2 = T 1 on peut écrire la précédente équation h= > (1 +tan 6) +(tan 6 ) d puis la
cos’@  cos0 2v,
2
d’ d’ d
mettre sous la forme < 5 tan’f —(tan@)d+h +g—2 =0 ou I’on identifie| K= 9 5 |:réponse A.
2vy 2vy 2v,
2
d
6. On identifie également K = h+ g 5 | réponse A.
2v,
2 2 2
2 d d 2 2 2 d
7. Pour avoir solution de 1’équation de la question 9, il faut que 0<d _49_2 h+g_2 soit 2 Vod >4gd h+g_2 qui
2v, 2v, 2v,
2 2 2 2
v v d
donne —02h+g—d2 et enfin hShIZ—O—g—Z : réponse C.
29 2v;, 29 2v,
1.1.



Probléme 2: Chute d’une gouttelette d’eau dans I’air (d’aprés banque PT 2024)

I.1 - Cas d'une atmosphére séche

La poussée d'Archiméde a pour norme

Ce rapport s’écrit

Ty
||PA”= 3TT L done ||—}Iit'.vﬁl—”=&:10‘3@:1.
Pl  $7R®peg WPl pe

IE' Appliquons le théoréme de la résultante cinétique a la gouttelette dans le référentiel terrestre, supposé galiléen,

de - -
M— = ﬁ + 7.
dit /
En projection sur I'axe (Oz) descendant,
dv
m— = mg — 6w, Rv.
dt g Ta
E‘ En se ramenant a une forme canonique,
dv 6Grm Rt
dt % m
e’
=1/
on identifie
4
ixR? 2p. B2
T= O soit i— e ~04s.
Gmn. R 6w R s

E‘ Les solution de 1'équation différentielle s’écrivent
u(t) = Ae /" 4 1g.
Initialement,
vit=0) = 0= A+7g donc A=-7g.

T
Cl  expr

Finalement,

‘ vit) =7g(l— e_*-hj ’ ‘

La vitesse limite s’identifie & la solution particuliére,

)
|vnm=Tg=4m~s |

On considére I'équation donnée dans I'énoncé : % =kS.

En introduisant le rayon r(t), cette équation s'écrit

4 dr dr
—mxIrl—=kx4rr? soit —=k.
3 dt

dt

Par intégration immédiate, on constate que le rayon évolue bien de maniére affine,

r(t) =ro+ kt.
F] En reliant la masse au volume,
dm dVv = . dm i 2
= e =N k x dmr(t) soit == 4wk pe(ro + kt)*.




E D’aprés la 2™ |oi de Newton adapte aux systémes de masse variable :

dv dm
mo + oy T Gmrn(rg + kt)v

4 d
37 Pe (ro + kt}:a —U + (47: kpe(-rg + kt)® — 6mn(ro + k‘t}) v= ?r pe (o + kt)’g

2
Epe(ru + kt}z — -I- (Ekpe(rg + k‘ﬂ) - 31';_,) v= —pe('rg - kt)z

dv 3k
3 e ru+k£ =

ce qui s'identifie avec la forme donnée par 1'énoncé en posant

s o peT
2pe

+ Solutions de I'équation homogéne : plusieurs méthodes sont envisageables, j'en propose ici deux.
= Méthode 1 : comme en maths! Les solutions d'une équation différentielle de la forme
V+f(t)y=0

s’écrivent & l'aide d’une primitive F(t) de la fonction f(t) et d'une constante C' (qu'on peut, si on préfére, englober
dans une constante indéterminée associée & la primitive « générale ») :

y(t) =Ce Flt),

Ici,

fi1) = donc F(t) = A in(rg + kt) convient.

ro + kt
si bien que

C

wu(t) = CB—-EIn{"n-.Lk*] =Cro+ ktJ—Aﬁc d'ot vu(t) = m
[1]

= Méthode 2 : séparation des variables. L'équation différentielle peut s'intégrer sous la forme

d1= A

= dt

wit) gy kdt
LH(O}=C’ T - __f To + kt

wa(t) A, ro+hkt

1 T In -

2l o (ro+ k)T
c' = To

d’ol1 on conclut en passant a 'exponentielle

o afToth =k . _ g
1-|.1(t]—f3’( - ) d’el vH(t}_C’(rg—l—kt)r

Le gros piége de cette méthode est de vouloir utiliser la condition initiale v(t =0) = 0 comme borne

de I'intégrale ... or I'intégrale ne porte que sur la solution homogéne, alors que la condition initiale
concerne la solution compléete, incluant aussi la solution particuliére.

Par aillenrs, les constantes C' et ' sont évidemment différentes

: elles n'ont méme pas la méme
dimension.



¢ Solution particuliére : cherchons-la sous la forme
vp(t)=at +b.

D’aprés 1'équation différentielle,

a+ at +b)=g

3
T - kﬁt
a(ro + kt) + 3k(at + b) = g(ro + kt)
(ak + 3ka — kg)t = gro — arg — 3kb
Le membre de gauche dépendant du temps mais pas celui de droite, les deux sont forcément nuls, done

g

== _ g
ak + 3ka— kg =0 = o
SEB—D donc 1 et 5 Tog
gro — arg — 3kb = .= —3kb=0 =
( 4) g 1k
d’ott on conclut sur la solution particuliére,
gt | Tog
vp(t)=—+—.
)=t

¢ Solution de I'équation compléte : compte tenu de ce qui précéde, cette solution est de la forme

3
_¢r_Te gt Tog
o) =C et T o

A Tinstant initial,
rog

r rog
0=C2+0+—= d o=
T — ak

Q-+l

EXpT

s ToBf, & Y. W
o T (1 (m+ka)3)+4‘

E Il s’agit de la tension de surface, aussi connue sous les noms de tension superficielle ou interfaciale.

Ainsi,
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