Devoir non Surveillé n°5 - PSI (Confinement)

28/03/2020

CHIMIE DES SOLUTIONS

Équilibres acido-basiques

**** Calculatrices autorisées ****

Remarques générales

Si vous utilisez un résultat du cours pour la première fois, vous devez le redémontrer.

Toutes les réponses doivent être justifiées.

Les applications numériques doivent être accompagnées d'unités sinon les points ne seront pas comptés.

Ne laissez pas de blancs sur votre copie. À la fin du DS, numérisez votre copie et déposez UN FICHIER PDF UNIQUE avec votre NOM et la matière (chimie ou SII) sur le cloud à l'adresse :

https://cloud.cpge-brizeux.fr/index.php/s/x8kzfMJHqsS6iHE

Données :

Constante des gaz parfaits : $R = 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$

1 bar = 10^5 Pa

 $T(K) = T(^{\circ}C) + 273,15$

1. Exercice 1 : Étude du pH de l'eau potable

d'après Agro Véto TB 2014

Données:

Électronégativité dans l'échelle de Pauling : $\chi(H) = 2, 2; \chi(O) = 3, 5$

L'accès à l'eau potable est un enjeu vital pour une grande partie de la population terrestre. Un défi majeur pour les sciences physiques et chimiques est de trouver des réponses face aux difficultés d'approvisionnement en eau dans de nombreuses régions du globe et pour assurer une eau de qualité alimentaire aux être humains.

- **1.1.** Représenter le modèle de Lewis de la molécule d'eau, de formule chimique H₂O et justifier à l'aide de la théorie VSEPR la forme géométrique de la molécule d'eau.
- 1.2. Justifier le caractère polaire de l'eau.

La molécule d'eau appartient à deux couples acide base : H_3O^+/H_2O et H_2O/HO^- .

- **1.3.** L'eau pure est un solvant ionisé. Expliciter cette affirmation.
- **1.4.** L'eau potable n'est pas pure mais contient un grand nombre de corps dissous. C'est le cas du dioxyde de carbone gazeux qui se dissout dans l'eau selon l'équilibre chimique suivant :

$$CO_2(g) = CO_2, H_2O$$

- **1.5.** Écrire l'équation de la réaction de l'eau avec CO₂,H₂O qui donne des ions hydrogénocarbonate HCO₃ et déduire que CO₂ est un acide de Brönsted (capable de libérer des protons H⁺).
- **1.6.** On appelle $K_{A,1}$ la constante d'équilibre de cette réaction. Donner l'expression de $K_{A,1}$ en fonction des concentrations des espèces impliquées.
- **1.7.** Déterminer le pH d'une eau dont la concentration apportée en dioxyde de carbone dissous est $C_0 = 10^{-3}$ mol. L^{-1} . On prendra pour la constante de cet équilibre la valeur $K_{A,1} = 10^{-6}$ à 25°C.
- **1.8.** L'ion hydrogénocarbonate est aussi un acide qui peut réagir à son tour avec l'eau selon un équilibre chimique dont la constante $K_{A,2}$ est de $10^{-10,3}$ à 25° C. Justifier par un calcul le fait qu'on peut négliger cet équilibre lorsqu'on calcule la valeur de pH.

2. Problème 2 : Quelques aspects de la réaction de saponification

d'après Agro Véto TB 2012

La réaction de saponification est l'hydrolyse basique des esters d'acides carboxyliques. Lors de la saponification de l'éthanoate d'éthyle par la soude, le bilan s'écrit :

$$CH_3COOCH_2CH_3 + HO^- = CH_3COO^- + CH_3CH_2OH$$

On prépare un volume $V_a = 100$ mL d'une solution de soude notée **S** de concentration voisine de 0,5 mol.L⁻¹ dans un mélange équimolaire éthanol/eau. On prélève un volume $V_b = 50,0$ mL de cette solution **S** que l'on place dans un ballon monocol surmonté d'un réfrigérant. Sous agitation, on introduit un volume $V_c = 2,00$ mL d'éthanoate d'éthyle (M = 88,1 g.mol⁻¹, d = 0,902), puis on chauffe à reflux pendant 30 min.

2.1. Quelle est l'équation de la réaction qui a lieu lors du chauffage?

2.2. Calculer les quantités de matière d'ester et d'ion hydroxyde introduites initialement. En déduire le réactif limitant.

On introduit le volume $V_d = 50,0$ mL restant de la solution **S** dans un bécher et on ajoute un volume $V_e = 100$ mL d'eau. On dose le mélange résultant par une solution d'acide chlorhydrique de concentration $C_a = 1,00$ mol. L^{-1} en réalisant un suivi pH-métrique. On obtient la courbe de dosage n°1 où, en abscisse, on porte le volume V (exprimé en mL) de la solution de soude versée et où, en ordonnée on superpose le pH et sa dérivée par rapport au volume.

- **2.3.** Quelles électrodes sont utilisées lors d'un suivi pH-métrique? Préciser le rôle de chacune d'entre elles.
- **2.4.** Indiquer l'équation de la réaction de dosage qui a lieu et dans quel domaine de volume d'acide versé elle a lieu.
- **2.5.** Calculer la concentration précise en ion hydroxyde dans la solution **S**.

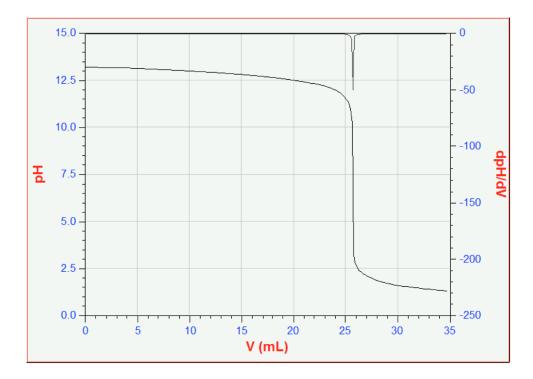
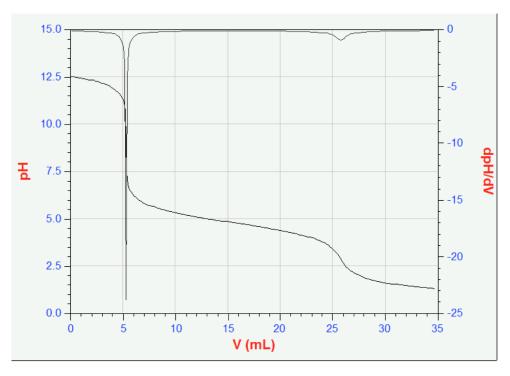



Figure 1 – Dosage n°1: dosage de la solution S par une solution d'acide chlorhydrique

À l'issue du chauffage à reflux, on transfère le mélange dans un bécher auquel on ajoute 100 mL d'eau et on dose le mélange obtenu par la même solution d'acide chlorhydrique que précédemment. On obtient la courbe de dosage n°2 qui adopte le même système d'axes que la courbe n°1.

- **2.6.** Indiquer les équations des réactions de dosage qui ont lieu en précisant dans quel domaine de volume d'acide versé.
- **2.7.** Calculer la quantité de matière d'anion éthanoate formé.
- **2.8.** En déduire le rendement de la réaction de saponification. Conclure quant au caractère quantitatif ou non de cette réaction.

 $\label{eq:Figure 2-Dosage n°2: dosage du milieu réactionnel à la fin de la réaction de saponification par une solution d'acide chlorhydrique$

3. Problème 4 : Acido-basicité des acides aminés et utilisation en synthèse

d'après G2E BCPST 2016

3.1. Acido-basicité de la cystéine

La cystéine est un acide aminé jouant un grand rôle dans le métabolisme humain du fait de sa chaîne latéral particulière qui contient une fonction thiol (-SH).

Données:

La forme totalement protonée de la cystéine a la formule ci-dessous. Cette forme, l'ion cystéinium, est notée LH₃⁺

Propriétés acido-basiques de la cystéine :

La première acidité de LH₃ est liée au groupe carboxyle -COOH, la deuxième est liée au groupement-SH et la troisième est liée au groupement -NH $_3^+$. On notera les pK $_A$ des couples comme suit :

pK_{A,1} pour le couple LH₃⁺/LH₂; pK_{A,2} pour le couple LH₂/LH⁻; pK_{A,3} pour le couple LH⁻/L²⁻

Produit ionique de l'eau à 25° C : $K_e = 10^{14}$

Calculs d'incertitude L'incertitude absolue U(A) (encore notée ΔA) sur une grandeur A peut se calculer à l'aide des formules :

$$\begin{array}{l} U(A) = A \times \sqrt{(\frac{U(X)}{X})^2 + (\frac{U(Y)}{Y})^2 + (\frac{U(Z)}{Z})^2} \text{ si } A = \frac{X \times Y}{Z} \\ U(A) = \sqrt{(U(X))^2 + (U(Y))^2 + (U(Z))^2} \text{ si } A = X + Y - Z \end{array}$$

- **3.1.** Donner les formules topologiques de LH₂, LH⁻ et L²⁻. Pour toute la suite, on n'utilisera pas les formules topologiques mais les notations simplifiées.
- **3.2.** Placer, sur un axe gradué en pH, les domaines de prédominance des espèces dérivant de la cystéine.
- **3.3.** Quelle particularité a l'espèce LH₂? Quel nom donne-t-on à cette propriété?

On donne ci-après :

- la courbe de titrage pH-métrique d'un volume $V_0 = 10,0$ mL d'une solution de chlorure de cystéinium (à laquelle on a ajouté 10 mL d'eau) par une solution d'hydroxyde de sodium de concentration C = 0,200 mol. L^{-1} (figure 3)
- la courbe issue de la simulation de ce même dosage, sur laquelle figure également les courbes de répartition des différentes espèces chimiques dérivées de la cystéine au cours du dosage (figure 4).
- **3.4.** Combien de sauts de pH observe-t-on ici? Interpréter la courbe en donnant les équations des réactions de dosage dans les différents domaines de volume versé.
- **3.5.** Attribuer, sur la courbe de la simulation du titrage ci-dessous, chaque courbe de distribution à l'espèce correspondante.
- **3.6.** Déterminer, en justifiant, les pK_A correspondant à chacun des couples acido-basiques de la cystéine.
- **3.7.** En déduire la valeur des constantes d'équilibre des équations écrites à la question 3.4 et justifier que les sauts de pH soient plus ou moins marqués.
- **3.8.** En justifiant la démarche, calculer la concentration en chlorure de cystéinum C₀.

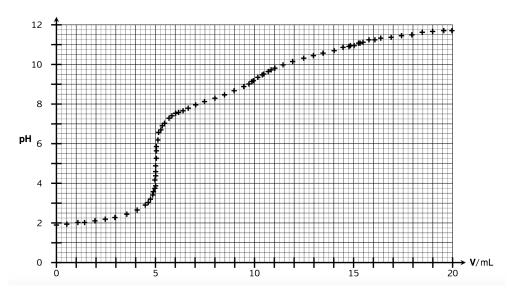


Figure 3 – Évolution du pH lors du titrage d'un volume V_0 = 10,0 mL de la solution de chlorure de cystéinium de concentration C_0 (additionnée de 10 mL d'eau) par une solution d'hydroxyde de sodium de concentration C = 0,200 mol. L^{-1}

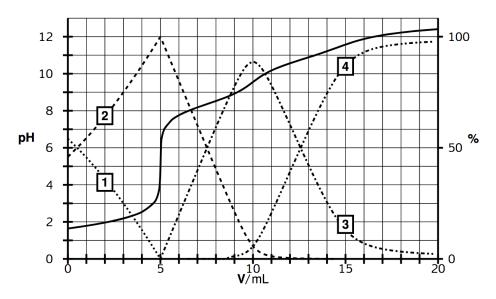


Figure 4 – Simulation du titrage avec courbes de répartition des différentes espèces chimiques en fonction du volume de soude versée au cours du titrage

On recherche un intervalle de confiance à 95 % pour l'estimation de la valeur de C_0 . On commence par rechercher l'incertitude-type u_{C_0} sur l'estimation de C_0 . Les incertitudes-types intervenant dans le calcul de u_{C_0} sont :

- pour $V_0 : u_{V_0} = 0.015 \text{ mL}$
- pour C : $u_C = 0.02 \text{ mol.L}^{-1}$
- pour le volume à la première équivalence : $u_{V_{E1}} = 0.05 \text{ mL}$
- **3.9.** Donner l'expression de u_{C_0} en fonction des incertitudes-types u_{V_0} , u_C et $u_{V_{E1}}$ ainsi que de C, V_0 et V_{E1} .
- **3.10.** Faire l'application numérique et déterminer u_{C_0} . Indiquer sur quels facteurs il conviendrait d'agir pour améliorer la précision du dosage.
- **3.11.** En prenant un facteur d'élargissement de 2, donner l'intervalle de confiance à 95% pour l'estimation de C_0 .