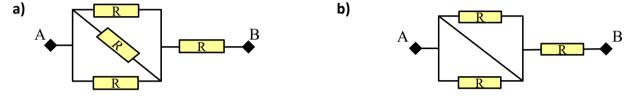

Dipôles électriques dans l'ARQS


1. Résistance équivalente ©

Établir l'expression littérale de R_{AB} la résistance équivalente à l'ensemble des résistances des circuits ci-contre puis calculer R_{AB} sachant que $R_1 = 2.0k\Omega$, $R_2 = 500\Omega$, $R_3 = 4.7k\Omega$.

2. Résistance équivalente ©

Dans les dipôles AB ci-dessous, toutes les résistances R sont identiques. Déterminer la résistance équivalente R_{AB} en fonction de R.

3. Dégivrage d'une voiture ©©

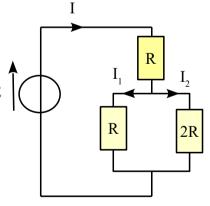
Le système de dégivrage d'une voiture est constitué de l'association en parallèle de 15 fils métalliques de longueur L = 105 cm. La résistivité du métal est ρ = 1.43 $10^{-7} \Omega$ m. Ce système est alimenté sous une tension de 12 V et consomme 180 W.

- 1-Déterminer la résistance R du système de dégivrage. En déduire la résistance r d'un fil.
- 2- Les fils sont des bandes d'épaisseur a=50 µm, déterminer la largeur b des fils. On précise pour cette question que la résistance r d'un conducteur métallique de résistivité ρ de longueur L et de section de surface s est : $r = \rho \frac{L}{s}$.

<u>Rep</u>: $r = 12\Omega$, b = 0.25mm

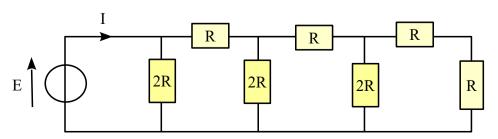
4. Modèle de pile @@

Une pile présente une différence de potentiel de $U_1 = 2,2V$ quand elle est traversée par un courant d'intensité $I_1=0,20$ A et une différence de potentiel $U_2 = 3,0V$ quand elle est traversée par un courant d'intensité $I_2=0,12$ A.


- 1) Déterminer la résistance interne r et le fem E du modèle de Thévenin de la pile.
- **2)** Déterminer la puissance fournie par la pile au reste du circuit ainsi que la puissance perdue par effet Joule à l'intérieur de la pile quand elle est traversée par l'intensité I₂.
- 3) Déduire de la question précédente le rendement de la pile.

<u>Rep</u>: $r = 10\Omega$, E = 4.2 V

5. Calculs d'intensités 😊 😊


Dans les circuit ci-contre, deux résistances valent R et une troisième 2R. Le circuit est alimenté par un générateur idéal de tension de fem E.

- a) Déterminer les intensités I₁ et I₂ en fonction de I.
- b) Déterminer en fonction de R la résistance équivalente R_{eq} du circuit, en déduire E l'expression de I en fonction de E et R

6. Calculs d'intensités ©©

Dans les circuit ci-dessous, quatre résistances valent R et trois 2R. Le circuit est alimenté par un générateur idéal de tension de fem E. Déterminer l'intensités I en fonction de E et R.

