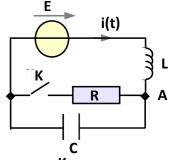

Régimes transitoires du 2nd ordre

1. Circuit LC: prise en compte des pertes ©©

On considère le circuit ci-contre. L=10mH, C=0,1µF


- t < 0 K_1 est fermé et K_2 est ouvert
- t = 0 On ferme K_2 et on ouvre K_1
- a) Pour $t = 0^-$, $t = 0^+$ déterminer $u_c(t)$, i (t) et $u_L(t)$.
- b) Pour t > 0, déterminer l'équation différentielle vérifiée par $u_c(t)$ en fonction du facteur de qualité et de la pulsation propre.
- c) Déterminer la résistance critique R_{C} , en déduire un ordre de grandeur de la E durée du régime transitoire.
- d) On suppose $R=80\Omega$. Le régime est pseudo-périodique, pourquoi ? Déterminer la pseudo-pulsation, le coefficient d'amortissement μ , et un ordre de grandeur de la durée du régime transitoire.
- e) On suppose $R=8000\Omega$. Le régime est apériodique, pourquoi ? Déterminer un ordre grandeur de la durée du régime transitoire.
- f) Comparer suivant les valeurs de R les différentes durées du régime transitoire.

2. Circuit L-R // C @@

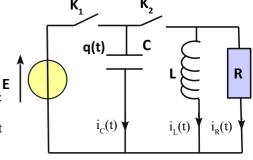
On considère le montage ci-contre. Le condensateur est initialement déchargé et l'interrupteur ouvert. A t=0, on ferme K.

- 1) Quand le régime permanent est établi, quelles sont les valeurs de u_{AB} et de i ?
- 2) Le régime permanent établi, on ouvre K. On prend cet instant comme nouvel origine des temps, déterminer $u_{AB}(t)$.
- 3) Calculer la valeur maximale atteinte par u_{AB} sachant que E=24V; R=24 Ω ; L=10H et C=100 μ F. $Rep: u_{ABmax}=340V$.

3. Circuit résonant parallèle @@

On réalise le montage ci-contre:

Pour t < 0 K_1 est fermé et K_2 est ouvert.


A t = 0, on ferme K_2 et on ouvre K_1 .

Pour t > 0:

1) Montrer que le courant i_L vérifie l'équation différentielle de la forme :

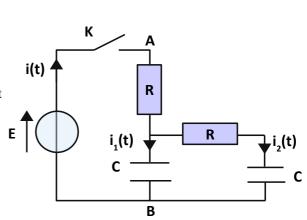
$$\frac{d^2i_L(t)}{dt^2} + \frac{\omega_0}{Q} \frac{di_L(t)}{dt} + \omega_0^2 i_L(t) = 0 \text{ . Comment s'appellent Q et } \omega_0 ? \text{ Quelle est}$$

leur unité?

2) Montrer que q(t) vérifie la même équation différentielle.

On suppose Q>>1.

- 3) Calculer les expressions approchées de $i_L(t)$ et u(t) en négligeant dans les calculs $1/Q^2$ devant 1.
- 4) Calculer les diverses énergies emmagasinées en fonction du temps, ainsi que l'énergie totale électromagnétique présente dans L et C. Commenter les résultats obtenus.


4. Mise en cascade de 2 cellules RC @@@

On met en cascade 2 cellules RC identiques comme l'indique la figure ci-contre.

Initialement les deux condensateurs sont déchargés et l'interrupteur K est ouvert.

A t=0 on ferme K.

- a) Déterminer sans calcul et en le justifiant:
 - $i_1(0^+), i_2(0^+), i(0^+)$
 - $i_1(\infty), i_2(\infty), i(\infty).$
- b) Pour t > 0, afin d'établir l'équation différentielle vérifiée par i₂(t)
 - Montrer que : $i_1 = RC \frac{di_2}{dt} + i_2$
 - Montrer que: $\frac{di}{dt} = -\frac{di_2}{dt} \frac{i_2}{RC}$
 - Déduire des 2 équations ci-dessus, l'équation différentielle du 2nd ordre vérifiée par i₂(t).
- c) Résoudre l'équation différentielle en déduire $i_2(t)$ puis tracer $i_2(t)$. A quelle date t_M $i_2(t)$ est-elle maximum?

