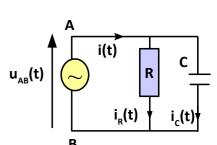

1. Additions de deux tensions sinusoïdales (exemple de cours 1)

On considère le dipôle suivant :

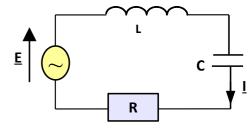
On suppose $i(t) = I_m \cos(\omega t)$.


Déterminer $u(t)=u_L(t)+u_R(t)=U_m\cos(\omega\,t+\phi)$ grâce à la représentation complexe.

2. Étude d'un circuit RC parallèle (exemple de cours 2)

Le dipôle AB ci-contre est en régime sinusoïdal forcé à la pulsation ω.

- 1) Exprimer son impédance complexes \underline{Z} en fonction de R C et ω .
- 2) On suppose $R = \frac{1}{(C \omega)} = 100\Omega$, calculer : $Z_m = |\underline{Z}|$ et $\theta = arg \underline{Z}$.
- 3) On suppose $u_{AB}(t) = U_m \cos(\omega t)$ et toujours $R = \frac{1}{(C\omega)} = 100\Omega$.
- a) Déterminer i(t) sous la forme : $i(t) = I_m \cos(\omega t + \varphi)$. Exprimer I_m en fonction de U_m et calculer φ .
- **b)** Déterminer $i_R(t) = I_{Rm} \cos(\omega t + \varphi_R)$. Exprime I_{Rm} en fonction de U_m et calculer de φ_R .
- **c)** Déterminer $i_{C}(t) = I_{Cm} \cos(\omega t + \varphi_{C})$. Exprimer I_{Cm} en fonction de U_{m} et calculer φ_{C} .
- **d)** $U_m = 5$ V, calculer les trois intensités efficaces du circuit. Commenter le résultat obtenu.



- •

3. Résonance d'intensité du circuit RLC (exemple de cours 3)

On considère le circuit RLC ci-contre, où le générateur délivre une tension $e(t) = E_m \cos(\omega t)$ de fréquence variable. L'intensité dans le circuit est de la forme : $i(t) = I_m(\omega) \cos(\omega t + \varphi(\omega))$

On associe à e(t) l'amplitude complexe \underline{E} = E_m et à i(t) l'amplitude complexe $L=I_m(\omega)\,e^{j\phi(\omega)}$

- 1) Exprimer l'impédance Z du circuit.
- 2) En déduire l'expression de I.

3) On pose
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
, $x = \frac{\omega}{\omega_0}$ et $Q = \frac{L\omega_0}{R}$. Montrer que : $\underline{L}(x) = \frac{E_m}{R(1+jQ(x-\frac{1}{x}))}$

- 4) Déduire de l'expression de $\underline{I}(x)$, $I_m(x)$. Montrer que $I_m(x)$ passe par un maximum pour une valeur particulière x_r de x. Quelle est la valeur ω_r correspondante ? Comment appelle-t-on ce phénomène ?
- 5) Tracer $I_m(x)$ en précisant $I_m(x_r)$.
- 6) Déduire de l'expression de $\underline{I}(x)$, $\cos\varphi(x)$ puis $\tan\varphi(x)$. En déduire la représentation graphique de $\varphi(x)$.
- 7) Définir la bande passante, montrer que $Q = \frac{\omega_0}{\Delta \omega}$, commenter le résultat.