1. Signal complexe et amplitude complexe (exemple de cours 1)

 E, ω, U_0, I_0, Q sont des réels positifs.

Q1. Donner le signal complexe ainsi que l'amplitude complexe associés aux signaux suivants :

a)
$$u(t)=U_0\cos(\omega t+\frac{\pi}{3})$$

a)
$$u(t) = U_0 \cos(\omega t + \frac{\pi}{3})$$
 b) $i(t) = -I_0 \cos(\omega t - \frac{\pi}{2})$

c)
$$e(t)=E\sin(\omega t+\frac{\pi}{2})$$

Q2. Donner le signal réel associé aux signaux d'amplitudes complexes suivantes :

a)
$$\underline{U} = U_0 e^{-j\frac{\pi}{3}}$$

b)
$$\underline{I} = -j \frac{U_0}{R}$$

c)
$$\underline{I} = -I_0$$

Q3. Donner le module \underline{U} ainsi que l'expression de tan (φ) , φ étant l'argument de \underline{U} .

a)
$$\underline{U} = \frac{E}{1 + jRC\omega}$$

b)
$$\underline{U} = \frac{jE RC \omega}{1 + jRC \omega}$$

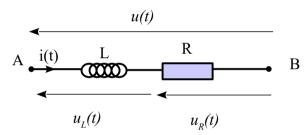
c)
$$I = \frac{-I_0 \omega_0^2}{-\omega^2 + j \frac{\omega \omega_0}{Q} + \omega_0^2}$$

2. Additions de deux tensions sinusoïdales (exemple de cours 2)

On considère le dipôle suivant :

On suppose $i(t) = I_m \cos(\omega t)$.

Déterminer $u(t)=u_L(t)+u_R(t)=U_m\cos(\omega t+\phi)$ grâce à la représentation complexe.



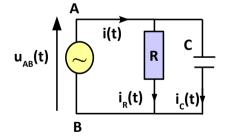
3. Étude d'un circuit RC parallèle (exemple de cours 3)

Le dipôle AB ci-contre est en régime sinusoïdal forcé à la pulsation ω.

1) Exprimer son impédance complexes \underline{Z} en fonction de R C et ω .

2) On suppose
$$R = \frac{1}{(C\omega)} = 100\Omega$$
, calculer : $Z_m = |\underline{Z}|$ et $\theta = arg \underline{Z}$.

3) On suppose
$$u_{AB}(t) = U_m \cos(\omega t)$$
 et toujours $R = \frac{1}{(C\omega)} = 100\Omega$.

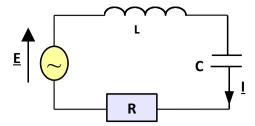


- a) Déterminer i(t) sous la forme : $i(t) = I_m \cos(\omega t + \varphi)$. Exprimer I_m en fonction de U_m et calculer φ .
- **b)** Déterminer $i_R(t) = I_{Rm} \cos(\omega t + \varphi_R)$. Exprime I_{Rm} en fonction de U_m et calculer de φ_R .
- c) Déterminer $i_C(t) = I_{Cm} \cos(\omega t + \varphi_C)$. Exprimer I_{Cm} en fonction de U_m et calculer φ_C .
- d) $U_m = 5$ V, calculer les trois intensités efficaces du circuit. Commenter le résultat obtenu.

4. Résonance d'intensité du circuit RLC (exemple de cours 4)

On considère le circuit RLC ci-contre, où le générateur délivre une tension $e(t) = E_m \cos(\omega t)$ de fréquence variable. L'intensité dans le circuit est de la forme : $i(t) = I_m(\omega) \cos(\omega t + \varphi(\omega))$

On associe à e(t) l'amplitude complexe \underline{E} = E_m et à i(t) l'amplitude complexe L= $I_m(\omega)e^{j\phi(\omega)}$



- 1) Exprimer l'impédance Z du circuit.
- 2) En déduire l'expression de <u>I</u>.

3) On pose
$$\omega_0 = \frac{1}{\sqrt{LC}}$$
, $x = \frac{\omega}{\omega_0}$ et $Q = \frac{L\omega_0}{R}$. Montrer que : $L(x) = \frac{E_m}{R(1+jQ(x-\frac{1}{x}))}$

- 4) Déduire de l'expression de $\underline{I}(x)$, $I_m(x)$. Montrer que $I_m(x)$ passe par un maximum pour une valeur particulière x_r de x. Quelle est la valeur ω_r correspondante ? Comment appelle-t-on ce phénomène ?
- 5) Tracer $I_m(x)$ en précisant $I_m(x_r)$.
- 6) Déduire de l'expression de $\underline{I}(x)$, $\cos\varphi(x)$ puis $\tan\varphi(x)$. En déduire la représentation graphique de $\varphi(x)$.
- 7) Définir la bande passante, montrer que $Q = \frac{\omega_0}{\Lambda \omega}$, commenter le résultat.