

Prénom NOM:
Consigne : Compléter les cases vides : 1. Définition :
On dit qu'une série de fonctions $\sum_{n} f_n$ converge normalement sur I si :
2. Proposition:
Nature d'une série géométrique, et valeur de la somme en cas de convergence :
$3. \ \ Terminologie:$
Soient F et G sous-espaces vectoriels d'un $\mathbb R$ -espace vectoriel E . La notation $E=F\oplus G$ signifie que :
4. Proposition:
Soient F et G sous-espaces vectoriels d'un \mathbb{R} -espace vectoriel E . Le propositions suivantes sont équivolentes :
i) $E=F\oplus G$
ii)
5. Proposition:
Développement par rapport à la i ème ligne d'une matrice $A \in \mathfrak{M}_n(\mathbb{R})$:
$\det A =$
6. Proposition:
Formule de Stirling :

7. Définition:

On appelle valeur propre de $A \in \mathfrak{M}_n(\mathbb{R})$:

8. Définition:

On appelle trace de $A \in \mathfrak{M}_n(\mathbb{R})$:

9. Définition :

On dit que l'intégrale généralisée de $f\in\mathcal{C}([0,+\infty[\mathbb{R})$ converge si :

10. Définition :

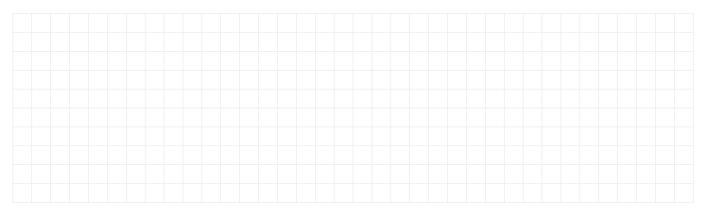
On dit que $f \in \mathcal{C}([0,+\infty[\mathbb{R}) \text{ est intégrable sur } [0,+\infty[\text{ si : }$

11. Proposition:

Nature d'une intégrale de Riemann sur $[1, +\infty[$:

$12. \ Proposition:$

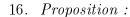
Série exponentielle : nature et notation de la somme : $% \left\{ \left(1,0\right) \right\} =\left\{ \left(1,0\right) \right\} =\left\{$



13. Théorème de convergence dominée :

14. Théorème de dérivation terme à terme :

15. Théorème de continuité de la somme :



Interro 3/4

Formule du binôme de Newton :

17. Proposition:

Formule de Taylor avec reste intégral :

18. Proposition:

Développement limité d'ordre 3 de $x \longmapsto \ln(1+x)$ en 0 :

19. Définition :

Deux évènements A et B sont dit **indépendants** si :

20. Définition :

Une variable aléatoire suit une loi géométrique si :

Interro 4/4