

Donner le rayon de convergence R et l'expression du développement en série entière en $t \in]-R,R[$ pour chaque fonction :

1. $t \mapsto \frac{1}{1-t}$ est développable en série entière sur]-R,R[,

avec $R = \dots$ et pour tout $t \in]-R, R[$, on a : $\frac{1}{1-t} = \sum_{n=0}^{+\infty} \dots t^{\dots}$

2. $t \longmapsto \ln(1+t)$ est développable en série entière sur] -R, R[

avec $R = \dots$ et pour tout $t \in]-R, R[$, on a : $\ln(1+t) = \sum_{n=0}^{+\infty} \dots t^{\dots}$

3. $t \mapsto (1+t)^{\alpha}$ avec $\alpha \in \mathbb{R} \setminus \mathbb{N}$ est développable en série entière sur]-R,R[,

avec $R = \dots$ et pour tout $t \in]-R, R[$, on a : $(1+t)^{\alpha} = \sum_{n=0}^{+\infty} \dots t^{-n}$

4. $t \longmapsto \sqrt{1-t}$ est développable en série entière sur]-R,R[,

avec $R = \dots$ et pour tout $t \in]-R, R[$, on a : $\sqrt{1-t} = \sum_{n=0}^{+\infty} \dots t^n$

5. $t \mapsto \operatorname{Arctan}(t)$ est développable en série entière sur]-R,R[,

avec $R = \dots$ et pour tout $t \in]-R, R[$, on a : Arctan $(t) = \sum_{n=0}^{+\infty} \dots t^{\dots}$

6. $t \longmapsto e^t$ est développable en série entière sur] -R,R[,

avec $R = \dots$ et pour tout $t \in]-R, R[$, on a : $e^t = \sum_{n=0}^{+\infty} \dots t^{\dots}$

7. $t \mapsto \operatorname{ch}(t)$ est développable en série entière sur]-R, R[,

avec $R = \dots$ et pour tout $t \in]-R, R[$, on a : $\operatorname{ch}(t) = \sum_{n=0}^{+\infty} \dots t^{\dots}$

8. $t \mapsto \sin(t)$ est développable en série entière sur]-R,R[

avec $R = \dots$ et pour tout $t \in]-R, R[$, on a : $\sin(t) = \sum_{n=0}^{+\infty} \dots t^{\dots}$