EXERCICE 8 : Soit $A \in M_n(\mathbb{R})$ une matrice inversible vérifiant $A^T A = AA^T$. Montrer que la matrice $M = (A^{-1})^T A$ est orthogonale.

Calcul, assez simple.

EXERCICE 9 : Soit E un espace vectoriel euclidien et soit $f: E \to E$ une application telle que

$$\forall x, y \in E, \ \langle f(x), f(y) \rangle = \langle x, y \rangle.$$

- 1. Démontrer que l'image d'une base orthonormale de E par f est une base orthonormale.
- 2. Montrer que f est linéaire.
- 1. Soit une b.o.n. $\mathcal{B} = (e_i)1 \leq i \leq n$. On note \mathcal{B}' la famille $(f(e_i))$. Alors $\forall i, j, (f(e_i)|f(e_j)) = (e_i|e_j) = \delta_{i,j} : \mathcal{B}'$ est une b.o.n.
- 2. Soient x et y dans E, $||f(\lambda x+y) \lambda f(x) f(y)||^2 = (f(\lambda x+y) \lambda f(x) f(y)|f(\lambda x+y) \lambda f(x) f(y)| = (f(\lambda x+y)|f(\lambda x+y)) + (\lambda f(x)+f(y)|\lambda f(x)+f(y)) 2(\lambda f(x)+f(y)|f(\lambda x+y))$ par linéarité et symétrie du produit scalaire.

D'après l'énoncé, $(f(\lambda x+y)|f(\lambda x+y))=(\lambda x+y|\lambda x+y)$, et, par linéarité du produit scalaire, et la même prorpiété de f, $(\lambda f(x)+f(y)|\lambda f(x)+f(y))=(\lambda x+y|\lambda x+y)$ et $(\lambda f(x)+f(y)|f(\lambda x+y))=(\lambda x+y|\lambda x+y)$. Ainsi $||f(\lambda x+y)-\lambda f(x)-f(y)||^2=0$. Par définie positivité de la norme, on en déduit que $f(\lambda x+y)=\lambda f(x)+f(y)$.

Ceci étant valable pour tout x et tout y de E, on en déduit que f est linéaire.

EXERCICE 10 : Soit $A = (a_{i,j})_{1 \le i,j \le n}$ une matrice réelle orthogonale.

Montrer que $\left| \sum_{1 \leqslant i,j \leqslant n} a_{i,j} \right| \leqslant n.$

Pour
$$X = \begin{pmatrix} 1 \\ 1 \\ ... \\ 1 \end{pmatrix}$$
, $X^T A X = \sum_{1 \le i, j \le n} a_{i,j}$. Or $X^T A X = (X|AX)$, $||X|| = \sqrt{n}$ et $||AX|| = ||X||$,

puisque A est orthogonale. L'inégalité de CS permet alors de conclure.

EXERCICE 11 : Soit u et v deux vecteurs unitaires d'un plan vectoriel euclidien orienté. Quels sont les isométries vectorielles qui envoient u sur v?

La rotation d'angle (u,v) est l'unique rotation qui convient.

Si u = v, la réflexion qui envoie u sur v est la réflexion par rapport à Vect(u).

Si $u \neq v$, la reflexion qui envoie u sur v est la réflexion par rapport à $\text{Vect}(u-v)^{\perp}$.

EXERCICE 12 : Soient une réflexion σ et une rotation r du plan. Montrer que $\sigma \circ r \circ \sigma = r^{-1}$. À quelle condition σ et r commutent?

Pour le premier point, on remarque que $\sigma \circ r$ est une isométrie indirecte du plan, donc une réflexion, ce qui implique que $(\sigma \circ r) \circ (\sigma \circ r) = \mathrm{id}$, puis, par composition à droite par r^{-1} , que $\sigma \circ r \circ \sigma = r^{-1}$

Second point : la commutativité s'écrit $\sigma \circ r = r \circ \sigma$. En composant à gauche par σ , on obtient : $r = \sigma \circ r \circ \sigma$. Ainsi $r = r^{-1}$, ce qui n'est possible que si l'angle θ de la rotation plane r est $0[\pi]$.

Inversement, on constate que la condition est suffisante pour assurer la commutativité.

Ainsi, une réflexion σ et une rotation r ne commutent que si et seulement si r est l'identité ou une symétrie centrale.

EXERCICE 13 : Montrer que l'ensemble des matrices d'ordre n muni du produit scalaire usuel est somme directe orthogonale des matrices symétriques et des matrices antisymétriques d'ordre n.

Soit A une matrice, alors $A=1/2(A+A^T)+1/2(A-A^T)$. Soient A symétrique et B antisymétrique, alors $(A|B)=\operatorname{tr}(A^TB)=\operatorname{tr}(AB)$ et, par symétrie du produit scalaire $(A|B)=(B|A)=\operatorname{tr}(B^TA)=\operatorname{tr}(-BA)=-\operatorname{tr}(BA)=-\operatorname{tr}(AB)=-(A|B)$, d'où (A|B)=0, puis, A et B étant quelconques, ces sous-espaces sont orthogonaux.

Exercice 14:

Soit $A=(a_{i,j})$. Déterminer $\inf_{M=(m_{i,j})\in S_n(\mathbb{R})} \sum_{1\leqslant i,j\leqslant n} (a_{i,j}-m_{i,j})^2$, où l'ensemble des matrices est muni de son produit scalaire usuel.

L'ensemble des matrices d'ordre n est somme directe orthogonale des matrices symétriques et des matrices antisymétriques d'ordre n. D'après le théorème de projection orthogonale, et puisque la borne inférieure se fait en variant M parmi les matrices symétriques, la quantité recherchée est alors $\delta = d(A, S_n(\mathbb{R}))$, avec $\delta^2 = ||A - p_{S_n(\mathbb{R})}(A)||^2 = ||1/2(A - A^T)||^2 = 1/4 \sum_{1 \leq i,j \leq n} (a_i, j - a_{j,i})^2$.