Définition : fonction de classe \mathcal{C}^1 , \mathcal{C}^k , \mathcal{C}^∞ , dérivées partielles, gradient.

Développement limité d'ordre 1 - Admis Soit f de classe \mathcal{C}^1 de U dans \mathbb{R} . f admet alors, en tout point a de U, un développement limité d'ordre 1, i.e pour tout $h = (h_1, \dots, h_n)$ tel que $a + h \in U$, on peut écrire :

$$f(a+h) = f(a) + \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(a) + ||h|| \ \varepsilon(h) \ \text{avec } \lim_{h \to 0} \varepsilon(h) = 0.$$

 \mathcal{C}^1 et continuité Si f est de classe \mathcal{C}^1 sur U, alors elle est continue sur U.

Si f est de classe \mathcal{C}^1 sur U, on appelle **différentielle de** f **en** a l'application, notée df(a), définie sur \mathbb{R}^n en posant :

$$\forall h \in \mathbb{R}^n, df(a)(h) = \sum_{i=1}^n h_i \frac{\partial f}{\partial x_i}(a) = (\overrightarrow{\nabla} f(a)|h).$$

Linéarité de la différentielle en a: Soient dx_i les applications coordonnées : $h \mapsto h_i$. Chaque application coordonnée est une forme linéaire sur \mathbb{R}^n , et les n applications dx_i forment une base de l'espace vectoriel des formes linéaires sur \mathbb{R}^n .

La différentielle de f en a est aussi une forme linéaire, qui se décompose dans cette base sous la forme :

$$df(a) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(a) dx_i.$$

Théorème de Schwarz -Admis Si f est de classe \mathcal{C}^2 sur U, alors : $\forall (i,j) \in [\![1,n]\!]^2, \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$

Condition nécessaire d'extremum On suppose f de classe \mathcal{C}^1 sur <u>l'ouvert</u> U. Si f admet un extremum local en $a \in U$, alors : $\overrightarrow{\nabla} f(a) = \overrightarrow{0}$.

Recherche d'extremums locaux/globaux sur une partie ouverte ou non ouverte.

Règle de la chaîne On considère n fonctions x_1, \cdots, x_n définies sur un même intervalle I de \mathbb{R} , à valeurs réelles et telles que : $\forall t \in I, (x_1(t), \cdots, x_n(t)) \in U$. On peut alors définir une fonction g de I dans \mathbb{R} en posant : $\forall t \in I, g(t) = f(x_1(t), \cdots, x_n(t))$.

On suppose que chaque x_i est de classe \mathcal{C}^1 sur I et que f est de classe \mathcal{C}^1 sur U. Alors g est de classe \mathcal{C}^1 sur I et $\forall t \in I, g'(t) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(x_1(t), \cdots, x_n(t)) x_i'(t)$.

Caractérisation des fonctions constantes

Soit f une fonction de classe \mathcal{C}^1 sur un ouvert <u>convexe</u> U. f est constante si et seulement si son gradient est nul en tout point.

Formule de changement de variables

On suppose que $\phi = (u, v)$ est de classe \mathcal{C}^1 sur U et que g est de classe \mathcal{C}^1 sur $V = \phi(U)$. Alors $f = g \circ \phi$ est de classe \mathcal{C}^1 sur U et :

$$\forall (x,y) \in U, \begin{cases} \frac{\partial f}{\partial x}(x,y) = \frac{\partial g}{\partial u}(u(x,y),v(x,y)) \frac{\partial u}{\partial x}(x,y) + \frac{\partial g}{\partial v}(u(x,y),v(x,y)) \frac{\partial v}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) = \frac{\partial g}{\partial u}(u(x,y),v(x,y)) \frac{\partial u}{\partial y}(x,y) + \frac{\partial g}{\partial v}(u(x,y),v(x,y)) \frac{\partial v}{\partial y}(x,y) \end{cases}$$

Savoir utiliser un changement de variables proposés ou chercher un changement de variables affine pour résoudre une équation aux dérivées partielles.

Tangente à une courbe Soit M_0 un point de la courbe ou de la surface. On dit que M_0 est un point régulier lorsque : $\nabla f(M_0) \neq \vec{0}$.

La courbe d'équation $f(x,y) = \lambda$ admet en tout point régulier une tangente orthogonale au gradient.

Déterminer l'équation de la tangente en un point d'une courbe définie implicitement. Déterminer l'équation du plan tangent à un point d'une surface définie implicitement.