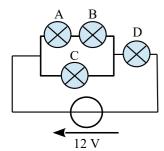

Étude de réseaux simples

1. Générateurs en série ©©



Deux générateurs de fem constantes E_1 et E_2 sont placés d'abord en série (cas 1), puis en opposition (cas 2) dans un circuit de résistance R.

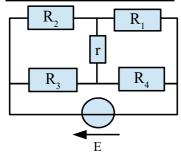
Un ampèremètre permet de mesurer les intensités I et I' des courants dans les deux cas.

- 1) Comment doit-on brancher l'ampèremètre ?
- 2) Exprimer E₁/E₂ en fonction de I et I'.
- 3) Calculer E₂ sachant que I = 3,21 mA, I' = 0,975 mA. Rep: $E_2 = 1,07V$

2. Que se passe-t-il quand une ampoule grille? ©

Quatre ampoules identiques A, B, C, D équivalentes d'un point de vue électrique à quatre résistances $R=40 \Omega$ sont connectées comme l'indique le schéma ci-contre.

- 1) Déterminer La puissance consommée par chaque ampoule.
- 2) L'ampoule A grille brutalement. Déterminer alors la puissance consommée par les trois ampoules restantes ainsi que la tension aux bornes de l'ampoule grillée A.
- 3) Dans les guirlandes des sapins de Noël, est-il préférable de mettre les différentes ampoules en série ou en parallèle ?


3. Calcul d'intensités : utilisation du pont diviseur de courant @@

Montrer que dans le circuit ci-contre :

$$I_1 = \frac{E(3R'+2R)}{(R(5R'+3R))}$$
 et $I_2 = \frac{E}{(5R'+3R)}$

4. Pont de Wheatstone ©©

Déterminer la condition sur R₁, R₂, R₃ et R₄ pour que l'intensité I dans r soit nulle.

$$\underline{R\acute{e}p}$$
: $R_1R_3 = R_2R_4$

5. Puissance électrique consommée dans un circuit @

Que vaut la puissance électrique consommée par l'ensemble des quatre résistances ?

R1

420 mA

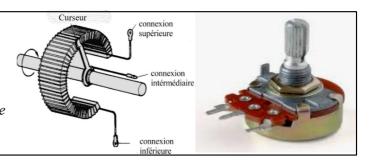
+

12 V

R2

R4

R4


Rép: P=5,4W

6. Montage potentiométrique ©©

Document:

Un potentiomètre est un type de résistance variable à trois bornes (figure ci-contre), dont une est reliée à un curseur se déplaçant sur une « piste » résistante terminée par les deux autres bornes.

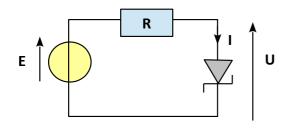
Ce système permet d'avoir une résistance R fixe entre les deux bornes extrêmes (totalité de la piste) et une résistance variable entre la borne reliée au curseur et une des deux autres bornes.

B

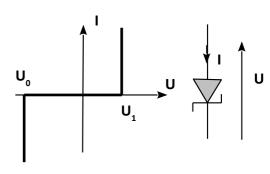
Exercice:

On considère le montage potentiométrique ci-contre. La résistance totale R du potentiomère est placée entre les points A et B tandis que son curseur est relié au point C de sorte que la résistance entre B et C soit égale à xR où $0 \le x \le 1$.

- 1) Déterminer la tension U en fonction des données grâce à la formule du pont diviseur de tension.
- 2) Retrouver le résultat précédent en utilisant la loi des mailles.


On connecte maintenant entre les bornes B et C une résistance utilisatrice Ru.

- 3) Déterminer la nouvelle valeur de U en fonction des données.
- 4) A quelle condition portant sur la résistance R du potentiomètre peut-on utiliser en première approximation le résultat de la 1^{ère} question.
- 5) La puissance consommée par le potentiomètre est $P = \frac{U^2}{xR} + \frac{(E-U)^2}{(1-x)R}$. Cette expression est-elle correcte ? Expliquer.


Rep: 3)
$$U = \frac{x R_u E}{R_u + R x(1-x)}$$

7. Point de fonctionnement d'un circuit contenant une diode Zener ©©

Un générateur idéal de tension de force électromotrice E > 0 est branché en série avec une résistance R et une diode Zener D dont la caractéristique courant-tension est représentée ci-dessous :

Caractéristique de la diode Zener

- 1) Détermine le point de fonctionnement du circuit, discuter suivant les valeurs de E.
- 2) Retrouver les valeurs de U et I par le calcul.