Interférences - Ondes stationnaires

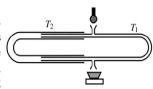
1. Cuve à ondes ©

Les deux sources S_1 et S_2 d'un vibreur de cuve à ondes distantes de d=4 cm vibrent en phase. Elles émettent des ondes de fréquence 50 Hz et d'amplitude a = 2 mm. La célérité de ces ondes à la surface de l'eau est égale à c = 0.4 m.s⁻¹.

- a) Les 2 sources sont-elles synchrones? Cohérentes?
- b) Déterminer l'amplitude du mouvement d'un point P situé à 3,7 cm de S_1 et 0,5 cm de S_2 .
- c) Même question pour le point N défini par $S_1N = 2,3$ cm et $S_2N = 4,3$ cm.
- d) Quel sont les déphasages respectifs $Φ_1$ et $Φ_2$ de P par rapport à S_1 et S_2 , les résultats concordent-il avec celui de la question b)?

2. Mesure de la vitesse du son 😊

Le trombone de Koenig est un dispositif de laboratoire permettant de faire interférer deux ondes sonores ayant suivi des chemins différents. Le haut-parleur, alimenté par un générateur de basses fréquences, émet un son de fréquence f=1500 Hz. On mesure le signal à la sortie avec un microphone branché sur un oscilloscope. En déplaçant la partie mobile T_2 on fait varier l'amplitude du signal observé. Elle passe deux fois de suite par une valeur minimale lorsqu'on déplace T_2 de $d=11,5\pm0,2$ cm.



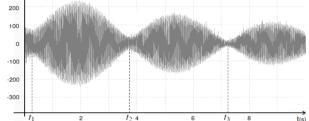
Déterminer la valeur de la célérité du son dans l'air à 20C, température à laquelle l'expérience est faite.

3. Battements ©

On frappe simultanément deux diapasons vibrant à la même fréquence f_0 =264Hz correspondant à la note de musique do3. On enregistre le signal reçu grâce à un microphone situé à égale distance des deux diapasons (figure ci-contre).

- 1) Quel phénomène présente le signal reçu ? Que peut-on en déduire ?
- 2) Calculer l'écart relatif de fréquence des 2 signaux.

Données : $t_1 = 0.26s$: $t_2 = 3.73s$: $t_3 = 7.24s$.



4. Expérience avec 2 hauts parleurs ©©©

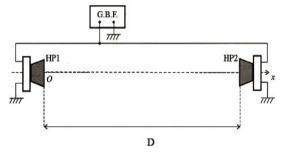
On utilise deux haut-parleurs identiques, placés face à face à une distance D l'un de l'autre : aux points O et D de l'axe Ox (cf figure ci-contre).

Les haut-parleurs sont alimentés par le GBF délivrant une tension sinusoïdale $e(t) = E\cos(\omega t)$.

On suppose que la présence d'un haut-parleur ne perturbe pas l'onde émise par l'autre haut-parleur, et n'engendre pas d'onde réfléchie.

Chaque haut-parleur émet une onde acoustique en phase avec la tension d'alimentation et d'amplitude A constante.

On négligera toute atténuation des ondes sonores émises par les hautparleurs.



- **1.** Donner la forme générale de l'onde sonore engendrée par le haut-parleur de gauche : $p_g(x,t)$.
- 2. L'onde engendrée par le haut-parleur de droite est $p_d(x, t) = A\cos\left(\omega(t + \frac{x}{c}) + \phi\right)$. Justifier l'expression fournie puis déterminer ϕ grâce à la condition aux limites sur l'onde en x=D.
- **3.** L'onde entre les deux haut-parleurs est la superposition des deux ondes déterminées ci-dessus. On rappelle que $\cos p + \cos q = 2\cos(\frac{p+q}{2})\cos(\frac{p-q}{2})$. Montrer que l'équation de l'onde résultante peut se mettre sous la forme :

 $p(x,t)=2A\cos(\omega t-\frac{kD}{2})\cos(kx-\frac{kD}{2})$ avec k est un facteur à déterminer. Quelle sorte d'onde est-ce? Justifier.

- **4.** On désire qu'au niveau du haut-parleur de gauche se forme un nœud de vibration. Exprimer les distances D_n que l'on doit choisir en fonction de k et d'un entier n, puis de la longueur d'onde λ et n.
- **5.** Montrer qu'au niveau du haut-parleur de droite on a aussi un nœud de vibration.
- **6.** Tracer la forme des ondes obtenues à t donné pour les 3 entiers les plus faibles.

5. Note d'une corde de guitare ©©

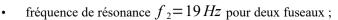
La corde ré d'une guitare a pour fréquence fondamentale $f_{0r\acute{e}}$ =293,7 Hz; la corde sol voisine vibre à f_{0sol} =392,0 Hz. La longueur des parties vibrantes des deux cordes est 65,0 cm. On souhaite raccourcir la partie vibrante de l'une des deux cordes de manière qu'elle sonne à la même fréquence que l'autre.

- 1. Quelle corde faut-il raccourcir?
- 2. De combien faut-il la raccourcir?
- 3. Quelle est la longueur d'onde de la vibration sonore produite alors par les deux cordes? (célérité du son dans l'air :340 m/s.)

Rep : 1) La corde ré ; 2)
$$L' = L \frac{f_{0r\acute{e}}}{f_{0sol}} \Delta L = 16.3 \text{ cm}$$
 ; 3) $\lambda = 86.7 \text{ cm}$

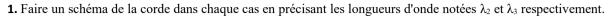
6. Expériences avec une corde de Melde ©©

Lors d'une expérience avec la corde de Melde, schématisée ci-contre, on observe les résultats suivants, pour une même longueur L de la corde et une même masse M accrochée à celle-ci:



• fréquence de résonance $f_3 = 28 Hz$ pour trois fuseaux ;

On note c la vitesse de propagation de l'onde.



2. Ces valeurs numériques des fréquences sont-elles compatibles entre elles ?

3. Exprimer les fréquences de résonance suivantes en fonction d'un entier n.

4. Exprimer la fréquence f_l du mode fondamental en fonction de L et c.

5. On cherche à déterminer c. Pour cela, on fait varier L et on mesure la fréquence f_i du mode fondamental. On obtient le tableau de valeurs ci-dessous :

L en cm	117	120	123	126	130	133
f_l en Hz	9,50 Hz	9,16	8,94	8,73	8,46	8,27

2

En déduire c en utilisant les données du tableau ainsi que son incertitude-type de type A. Justifier la validité du modèle utilisé.

6. La masse *M* accrochée à la corde est égale à 25,0 g.

6.1. Quelle est la tension de la corde ? Faire l'application numérique.

6.2. En déduire un ordre de grandeur de la masse linéique de la corde. Quelle autre méthode peut-on utiliser pour faire cette détermination ?

<u>Données</u>: intensité de la pesanteur : $g = 9.81 \, \text{m.s}^{-2}$.

