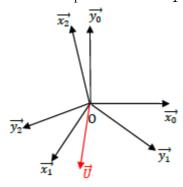

Travaux Dirigés 6

Introduction à la cinématique

Exercice 1: Projections simples

Soit un vecteur \vec{u} tel que : $\vec{u} = u \cdot \vec{x_1}$



Question 1 : Mettre en place le paramétrage angulaire θ_{10} .

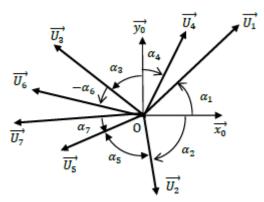
Question 2: Exprimer le vecteur \vec{u} dans la base B₀.

Exercice 2: Projection dans plusieurs bases

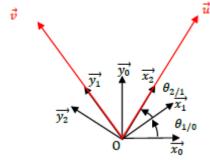
Soient deux bases B_1 et B_2 en rotation l'une par rapport à l'autre et une base B_0 . Il existe donc deux rotations distinctes θ_{10} et θ_{21} . Le vecteur \vec{u} est fixe dans la base B_2 . On définit un angle non orienté α inférieur à 180° entre \vec{u} et \vec{y}_2 . On définit \vec{U} par : $\vec{U} = U \cdot \vec{x}_1$

Question 1 : Proposer le paramétrage angulaire de θ_{10} , θ_{21} et α

Question 2 : Exprimer U dans la base B₂


Question 3 : Exprimer U dans la base B₁

Question 4 : Exprimer u dans la base B_0


Exercice 3: Somme de vecteurs

$$\overrightarrow{U_1} = \ U_1 \cdot \overrightarrow{u_1} \ ; \overrightarrow{U_2} = \ U_2 \cdot \overrightarrow{u_2} \ ; \overrightarrow{U_3} = \ U_3 \cdot \overrightarrow{u_3} \ ; \overrightarrow{U_4} = \ U_4 \cdot \overrightarrow{u_4} \ ; \overrightarrow{U_5} = \ U_5 \cdot \overrightarrow{u_5} \ ; \overrightarrow{U_6} = \ U_6 \cdot \overrightarrow{u_6} \ ; \\ \overrightarrow{U} = \overrightarrow{U_1} + \overrightarrow{U_2} + \overrightarrow{U_3} + \overrightarrow{U_4} + \overrightarrow{U_5} + \overrightarrow{U_6} + \overrightarrow{U_7}$$

Question 1: Donner l'expression de \vec{U} dans la base B_0 .

Exercice 4 : Produit scalaire et vectoriel

Question 1 : Expliciter l'angle orienté $(\overrightarrow{u_3}, \overrightarrow{u_3})$ en fonction des angles proposés

Question 2 : Projeter \vec{v} dans la base B_2

Question 3: Calculer $\overrightarrow{u_3}$. $\overrightarrow{u_3}$

Question 4: Calculer $\overrightarrow{u_3} \wedge \overrightarrow{u_3}$