
Méthodes numériques

Résolution numérique d'équations différentielles

 TD

1. 🖥️ Circuit RC
On cherche à modéliser la charge d’un condensateur dans un circuit RC série soumis à une tension continue
𝐸.

𝐸

𝐾 𝑅

𝐶 𝑢

À 𝑡 = 0, l’interrupteur 𝐾 est fermé. Le condensateur est initialement déchargé.

1/ Montrer que 𝑢 vérifie l’équation différentielle

d𝑢
d𝑡

= − 1
𝑅𝐶

𝑢 + 1
𝑅𝐶

𝐸

La loi des mailles s’écrit 𝐸 = 𝑢𝑅 + 𝑢 avec 𝑢𝑅 = 𝑅𝑖 et 𝑖 = 𝐶 d𝑢
d𝑡 . Donc

𝐸 = 𝑅𝐶d𝑢
d𝑡

+ 𝑢

2/ Que vaut 𝑢(𝑡 = 0+) ?

La tension aux bornes du condensateur est continue, de plus elle est nulle à 𝑡 = 0− (condensateur
initialement déchargé). Donc 𝑢(0+) = 0.

On souhaite résoudre numériquement cette équation différentielle à l’aide de la méthode d’Euler explicite.
On note 𝑢𝑖 = 𝑢(𝑖 ⋅ Δ𝑡) la tension discrétisée.

3/ Établir une relation de récurrence sur 𝑢𝑖.

La relation de Taylor à l’ordre 1 donne

𝑢𝑖+1 = 𝑢(𝑖 ⋅ Δ𝑡 + Δ𝑡) = 𝑢(𝑖 ⋅ Δ𝑡) + Δ𝑡d𝑢
d𝑡

= 𝑢𝑖 −Δ𝑡(− 1
𝑅𝐶

𝑢𝑖 +
1

𝑅𝐶
𝐸)

4/ Écrire une suite d’instructions permettant de calculer les valeurs successives de 𝑢𝑖. On prendra 𝑅 =
1kΩ, 𝐶 = 1µF, 𝐸 = 5V, Δ𝑡 = 0.2ms et on effectuera 25 itérations.

R = 1e3
C = 1e-6
E = 5
Delta_t = 0.2e-3

N = 25
u = [0] # u(0) = 0 V

1

for i in range(N):
 u.append(u[i] + Delta_t * (-1/(R * C) * u[i] + 1/(R * C) * E))

5/ Tracer l’évolution de 𝑢 en fonction du temps. Comparer avec la solution analytique que vous calculerez
et tracerez également.

La solution analytique est

𝑢(𝑡) = 𝐸(1 − exp(− 𝑡
𝑅𝐶

))

import numpy as np
import matplotlib.pyplot as plt

temps = [i * Delta_t for i in range(N + 1)]
u_analytique = [E * (1 - np.exp(-t / (R * C))) for t in temps]

plt.plot(temps, u, label='Numérique (Euler explicite)')
plt.plot(temps, u_analytique, label='Analytique')
plt.xlabel('Temps (s)')
plt.ylabel('Tension u (V)')
plt.legend()
plt.show()

6/ Observer qualitativement l’effet de la valeur de Δ𝑡 sur la précision de la solution numérique.

Plus Δ𝑡 est petit, plus la solution numérique est précise et proche de la solution analytique.

2. 🖥️ Circuit électrique d'ordre 3
On s’intéresse au circuit électrique d’ordre 3 représenté ci-dessous.

𝐸

𝐶 𝐶

𝑅 𝑢𝐿

Les valeurs des composants sont 𝑅 = 10Ω, 𝐿 = 1 ⋅ 10−3 H et 𝐶 = 1 ⋅ 10−6 F. La source de tension fournit
une tension constante 𝐸 = 10V.

L’évolution de 𝑢 est régie par l’équation différentielle

𝑅𝐿𝐶2d3𝑢
d𝑡3

+ 2𝐿𝐶d2𝑢
d𝑡2

+𝑅𝐶d𝑢
d𝑡

+ 𝑢(𝑡) = 0

On suppose que les conditions initiales sont 𝑢(𝑡 = 0) = 0, d𝑢d𝑡 |𝑡=0
= 3V s−1 et d

2𝑢
d𝑡2 |𝑡=0

= 0. L’objectif de cet

exercice est de déterminer l’évolution de 𝑢(𝑡) au cours du temps.

1/ On note 𝑣(𝑡) = d𝑢
d𝑡 et 𝑤(𝑡) =

d2𝑢
d𝑡2 . Mettre le problème sous la forme d’un problème d’Euler en exprimant

d𝑢
d𝑡 ,

d𝑣
d𝑡 et

d𝑤
d𝑡 en fonction de 𝑢(𝑡), 𝑣(𝑡) et 𝑤(𝑡).

2

{

d𝑢

d𝑡 = 𝑣
d𝑣
d𝑡 = d2𝑢

d𝑡2 = 𝑤
d𝑤
d𝑡 = d3𝑢

d𝑡3 = −2𝐿𝐶𝑤(𝑡)−𝑅𝐶𝑣(𝑡)−𝑢(𝑡)
𝑅𝐿𝐶2

2/ On note Y np.array([u, v, w]). Définir une fonction dY_dt(Y,t) qui retourne le tableau d𝑌d𝑡 en prenant
comme entrée le temps 𝑡 et le tableau 𝑌 .

def dY_dt(Y, t):
 u, v, w = Y
 du_dt = v
 dv_dt = w
 dw_dt = (-2 * L * C * w - R * C * v - u) / (R * L * C**2)
 return np.array([du_dt, dv_dt, dw_dt])

3/ Écrire une suite d’instructions permettant de calculer l’évolution de 𝑌 (𝑡) entre 𝑡 = 0 et 𝑡 = 1ms avec
un pas de temps Δ𝑡 = 1µs en utilisant la méthode d’Euler explicite.

Définir les constantes
R = 10 # ohm
L = 1e-3 # H
C = 1e-6 # F
E = 10 # V

Conditions initiales
u0 = 0 # V
v0 = 3 # V/s
w0 = 0 # V/s²
Y0 = np.array([u0, v0, w0])

Paramètres de temps
t_final = 1e-3 # s
dt = 1e-6 # s

Listes pour stocker les résultats
temps = [0]
Y = [Y0]

while temps[-1] < t_final:
 Y.append(Y[-1] + dY_dt(Y[-1], temps[-1]) * dt)
 temps.append(temps[-1] + dt)

4/ Tracer l’évolution de 𝑢(𝑡) au cours du temps.

import matplotlib.pyplot as plt

u = [y[0] for y in Y]

plt.plot(temps, u)
plt.xlabel('Temps (s)')
plt.ylabel('Tension u(t) (V)')
plt.title('Évolution de la tension u(t) au cours du temps')
plt.grid()
plt.show()

La fonction odeint(func, y0, t)1 de la bibliothèque scipy.integrate permet de résoudre des problèmes d’Euler
en appliquant des méthodes plus sophistiquées mais reposant sur le même principe. Elle prend en entrée

1Documentation complète disponible à l’adresse https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.
odeint.html

3

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

• func: une fonction qui retourne la dérivée de l’état en fonction de l’état et du temps,
• y0: l’état initial,
• t: un tableau des instants où l’on souhaite connaître la solution.

5/ Reprendre la question 3 en utilisant la fonction odeint pour calculer l’évolution de 𝑌 (𝑡).

from scipy.integrate import odeint

Paramètres de temps
t_final = 1e-3 # s
dt = 1e-6 # s
t = np.arange(0, t_final, dt)

Calcul de l'évolution de Y(t) avec odeint
Y = odeint(dY_dt, Y0, t)

3. 🖥️ Tir cadré ? ★
On étudie un tir au football. La vitesse initiale du ballon est de 20m s−1 selon l’axe 𝑥 (horizontal) et de
12m s−1 selon l’axe 𝑧 (vertical). Le ballon est sur le sol juste avant le tir.

Dans un premier temps, on ne prend en compte que la gravité.

1/ Établir l’équation différentielle vérifiée par la vitesse ⃗𝑣 du ballon. Exprimer la dérivée de la vitesse.

Le théorème de la résultante cinétique appliqué au ballo, s’écrit

𝑚d ⃗𝑣
d𝑡

= 𝑚 ⃗𝑔

soit

d ⃗𝑣
d𝑡

= ⃗𝑔

On résout numériquement l’équation différentielle en utilisant la fonction solve_ivp de la bibliothèque
scipy.integrate.

2/ Compléter le code suivant.

from scipy.integrate import solve_ivp, trapezoid
import numpy as np

g = 9.81 # m/s^2
rho = 1.2 # kg/m^3
v0 = np.array([20, 0, 12]) # m/s

def dv_dt(t, v):
 a = ... # accélération
 return a

sol = solve_ivp(dv_dt, [0, 2], v0, max_step=0.01)

t = sol.t
vx = sol.y[0, :]
vy = sol.y[1, :]
vz = sol.y[2, :]

def dv_dt(t, v):
 a = - g * np.array([0,0,1])
 return a

4

Il est maintenant nécessaire de calculer la position du ballon en intégrant la vitesse en utilisant la méthode
des rectangles.

3/ Compléter le code suivant. Attention, les temps calculés par la fonction solve_ivp ne sont pas forcément
régulièrement espacés.

x = [0]
y = [0]
z = [0]

for i in range(1, len(sol.t)):
 x.append(...)
 y.append(...)
 z.append(...)

for i in range(1, len(sol.t)):
 x.append(x[-1] + vx[i] * (t[i]-t[i-1]))
 y.append(y[-1] + vy[i] * (t[i]-t[i-1]))
 z.append(z[-1] + vz[i] * (t[i]-t[i-1]))

Pour vérifier si le tir est cadré, on trace la trajectoire du ballon grâce au code suivant.

fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")

ax.plot(x, y, z)

Tracé des cages
x_cages = 14.5
y_cages = 0.3
l_cages = 7.32
h_cages = 2.44
ax.plot(
 [x_cages]*4,
 [y_cages, y_cages, y_cages + l_cages, y_cages + l_cages],
 [0, h_cages, h_cages, 0],
 color="orange")

Mise en forme
ax.set_xlabel("x (m)")
ax.set_ylabel("y (m)")
ax.set_zlabel("z (m)")
ax.set_title("Trajectoire 3D")
ax.set_zlim(0, max(z)*1.1)

plt.tight_layout()
plt.show()

4/ Le tir est-il cadré ?

Non, la trajectoire du ballon passe au-dessus des cages.

On prend maintenant en compte les frottements avec l’air ⃗𝐹 = −1
2𝜋𝜌𝐶𝑥𝑅2 ‖ ⃗𝑣‖ ⃗𝑣. On donne les valeurs

numériques suivantes : 𝜌 = 1.2 kgm−3, 𝐶𝑥 = 0.47, 𝑅 = 0.11m et 𝑚 = 145 g

5/ Modifier la fonction dv_dt pour inclure la force de traînée.

On pourra utiliser la fonction np.linalg.norm(v) pour calculer la norme du vecteur vitesse 𝑣.

Le tir est-il maintenant cadré ?

rho = 1.2 # kg/m^3
Cx = 0.47 # coefficient de trainée

5

R = 0.11 # rayon m
S = np.pi * R**2 # cross-sectional area
m = 0.145 # masse kg

def dv_dt(t, v):
 a = - g * np.array([0,0,1]) - 1/2 * rho * Cx * S / m * np.linalg.norm(v) * v
 return a

Le tir n’est toujours pas cadré, il passe à coté des cages.

Le footballeur a mis de l’effet dans la balle en lui imprimant une rotation de Ω = 100 min−1 autour de
l’axe (𝑂𝑧). Cette rotation engendre une force de portance appelée force de Magnus et s’exprimant comme
1
2𝐶𝜌𝑅3 ⃗𝛺 ∧ ⃗𝑣 avec 𝐶 ≈ 1.

6/ Modifier la fonction dv_dt pour inclure la force de Magnus.

Le tir est-il maintenant cadré ?

Omega = np.array([0,0,100*2*np.pi/60])

def dv_dt(t, v):
 a = - g * np.array([0,0,1]) - 1/2 * rho * Cx * S / m * np.linalg.norm(v) * v + 1/2 * rho * R**3 *
np.cross(Omega,v) / m
 return a

Oui, en prenant en compte toutes ces forces, le tir est cadré.

6

	1. 🖥️ Circuit RC
	2. 🖥️ Circuit électrique d'ordre 3
	3. 🖥️ Tir cadré ? ★

