Méthodes numériques
Résolution numérique d'équations différentielles
TD

1. Circuit RC

On cherche & modéliser la charge d’un condensateur dans un circuit RC série soumis a une tension continue
E.

OEEESE

At= 0, linterrupteur K est fermé. Le condensateur est initialement déchargé.

1/ Montrer que u vérifie I'équation différentielle

du_ 1 +1E
i RC'TRC

La loi des mailles s’écrit E = up +u avec up = Ri et i = C’%—;‘. Donc

du
FE =RC—
dt—i—u

2/ Que vaut u(t =07%) ?

La tension aux bornes du condensateur est continue, de plus elle est nulle & ¢ = 0~ (condensateur
initialement déchargé). Donc u(07) = 0.

On souhaite résoudre numériquement cette équation différentielle & 1’aide de la méthode d’Euler explicite.
On note u; = u(i - At) la tension discrétisée.

3/ Etablir une relation de récurrence sur u,.

La relation de Taylor & I’ordre 1 donne

du 1 1
(i At A =i A + A = — At[———u, + —F
Ui = uli- At + At) = u(i- At) + tdt u; t(RC’ul—i_RC >

4/ Ecrire une suite d’instructions permettant de calculer les valeurs successives de u;. On prendra R =
1kQ, C=1nF, E =5V, At = 0.2ms et on effectuera 25 itérations.

' N

R = 1le3
C = le-6
E=5

Delta_t = 0.2e-3

N
u

25
[0] # u(0) =0V

for i in range(N):
u.append(uli] + Delta_t * (-1/(R * C) * uli]l + 1/(R * C) * E))

5/ Tracer I’évolution de u en fonction du temps. Comparer avec la solution analytique que vous calculerez
et tracerez également.

e N

La solution analytique est
u(t)=FE (1 e (!))
= — ex _——_—
P{UTRe

import numpy as np
import matplotlib.pyplot as plt

temps = [i * Delta_t for i in range(N + 1)]
u_analytique = [E * (1 - np.exp(-t / (R * C))) for t in temps]

plt.plot(temps, u, label='Numérique (Euler explicite)')
plt.plot(temps, u_analytique, label='Analytique')
plt.xlabel('Temps (s)')

plt.ylabel('Tension u (V)')

plt.legend()

plt.show()

\. J

6/ Observer qualitativement 'effet de la valeur de At sur la précision de la solution numérique.

[Plus At est petit, plus la solution numérique est précise et proche de la solution analytique.]

2. Circuit électrique d'ordre 3
On s’intéresse au circuit électrique d’ordre 3 représenté ci-dessous.

oI SiE

Les valeurs des composants sont R =10Q, L=1-103H et C = 1-10"%F. La source de tension fournit

une tension constante £ = 10V.

L’évolution de u est régie par I’équation différentielle

d3u d?u du
RLC?*— +2LC— + RC— t)=0
s T2LOqE RO T ul®)
On suppose que les conditions initiales sont u(t = 0) = 0, ‘é—lt‘ —o 3Vslet ‘31273 0= 0. L’objectif de cet
= t=

exercice est de déterminer 1’évolution de u(t) au cours du temps.

1/ On note v(t) = $% et w(t) = %. Mettre le probleme sous la forme d’un probléme d’Euler en exprimant

du v ot dv en fonction de u(t), v(t) et w(t).

du

a — Y

dv _ d?u _

dt — dtz T

dw _ d3u _ —2LCw(t)—RCv(t)—u(t)
dt T des T RLC?

2/ On note Y np.array([u, v, w]). Définir une fonction dy_dt(y,t) qui retourne le tableau %—lt/ en prenant

comme entrée le temps t et le tableau Y.

{ N\
def dy_dt(Y, t):

u, v, w =Y

du_dt = v

dv_dt = w

dw dt = (-2 * L* C*w-R*Cx*xv-u / (Rx*L * Cxx2)

return np.array([du_dt, dv_dt, dw_dt])

\. J

3/ Ecrire une suite d’instructions permettant de calculer évolution de Y (t) entre t = 0 et t = 1 ms avec
un pas de temps At = 1ps en utilisant la méthode d’Euler explicite.

{ N\
Définir les constantes
R = 10 # ohm
L=1e-3 # H
C=1le-6 #F
E=10 #V

Conditions initiales

u0o = 0 #V

vO =3 # V/s

wOo =0 # V/s?

YO = np.array([u0, vO, wO])

Paramétres de temps
t_final = 1e-3 # s
dt = le-6 # s

Listes pour stocker les résultats
temps = [0]
Y = [vo]

while temps[-1] < t_final:
Y.append(Y[-1] + dY_dt(Y[-1], temps[-1]) * dt)
temps.append (temps [-1] + dt)

\. J

4/ Tracer I’évolution de u(t) au cours du temps.

' N

import matplotlib.pyplot as plt
u = [y[0] for y in Y]

plt.plot(temps, u)

plt.xlabel('Temps (s)')

plt.ylabel('Tension u(t) (V)')

plt.title('Evolution de la tension u(t) au cours du temps')
plt.grid()

plt.show()

\. J

La fonction odeint (func, yo, t)! de la bibliothéque scipy.integrate permet de résoudre des problémes d’Euler
en appliquant des méthodes plus sophistiquées mais reposant sur le méme principe. Elle prend en entrée

N

'Documentation compléte disponible & I'adresse https://docs.scipy.org/doc/scipy/reference/generated /scipy.integrate.

odeint.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

e func: une fonction qui retourne la dérivée de 1’état en fonction de I’état et du temps,
e yo: I’état initial,
e t: un tableau des instants ou 'on souhaite connaitre la solution.

5/ Reprendre la question 3 en utilisant la fonction odeint pour calculer I’évolution de Y'(t).

7

from scipy.integrate import odeint

Paramétres de temps
t_final = 1e-3 # s

dt = le-6 # s

t = np.arange(0, t_final, dt)

Calcul de 1'évolution de Y(t) avec odeint
Y = odeint(dY_dt, YO, t)

3. Tir cadré 7 %
On étudie un tir au football. La vitesse initiale du ballon est de 20ms™! selon I'axe x (horizontal) et de
12ms~! selon I'axe z (vertical). Le ballon est sur le sol juste avant le tir.

Dans un premier temps, on ne prend en compte que la gravité.

1/ Etablir 'équation différentielle vérifiée par la vitesse ¥ du ballon. Exprimer la dérivée de la vitesse.

Le théoreme de la résultante cinétique appliqué au ballo, s’écrit
dv .
m—=m
at -
soit
dv
at 7

On résout numériquement 1’équation différentielle en utilisant la fonction solve_ivp de la bibliotheque
scipy.integrate.

2/ Compléter le code suivant.

from scipy.integrate import solve_ivp, trapezoid

import numpy as np

g =9.81 # m/s72
rho = 1.2 # kg/m”3
vO = np.array([20, 0, 12]) # m/s

def dv_dt(t, v):
a = ... # accélération

return a

sol = solve_ivp(dv_dt, [0, 2], vO, max_step=0.01)

t = sol.t

vx = sol.y[0, :]
vy = sol.y[1, :]
vz = sol.y[2, :]

def dv_dt(t, v):
a =- g * np.array([0,0,1])
return a

Il est maintenant nécessaire de calculer la position du ballon en intégrant la vitesse en utilisant la méthode
des rectangles.

3/ Compléter le code suivant. Attention, les temps calculés par la fonction solve_ivp ne sont pas forcément
régulierement espacés.

x = [0]
y = [0]
z = [0]

for i in range(1l, len(sol.t)):
x.append(...)
y.append(...)
z.append(...)

in range(l, len(sol.t)):

.append(x[-11 + vx[i]l * (t[il-t[i-11))
.append(y[-1] + vy[i] * (t£[i]-t[i-11))
.append(z[-1] + vz[i] * (t[i]-t[i-11))

N < W P

Pour vérifier si le tir est cadré, on trace la trajectoire du ballon grace au code suivant.

fig = plt.figure()
ax = fig.add_subplot(111l, projection="3d")

ax.plot(x, y, z)

Tracé des cages
x_cages = 14.5
y_cages = 0.3
1_cages = 7.32
h_cages = 2.44
ax.plot(
[x_cages]*4,
[y_cages, y_cages, y_cages + 1_cages, y_cages + 1_cages],
[0, h_cages, h_cages, 0],
color="orange")

Mise en forme
ax.set_xlabel("x (m)")
ax.set_ylabel("y (m)")
ax.set_zlabel("z (m)")
ax.set_title("Trajectoire 3D")
ax.set_z1im(0, max(z)*1.1)

plt.tight_layout()
plt.show()

4/ Le tir est-il cadré ?

[Non, la trajectoire du ballon passe au-dessus des cages.]

On prend maintenant en compte les frottements avec l'air F = —3mpCyR? | . On donne les valeurs
numériques suivantes : p = 1.2kgm ™3, C, =047, R=0.11m et m = 145¢g

5/ Modifier la fonction dv_dt pour inclure la force de trainée.
On pourra utiliser la fonction np.1linalg.norm(v) pour calculer la norme du vecteur vitesse v.

Le tir est-il maintenant cadré 7

rho = 1.2 # kg/m™3
Cx = 0.47 # coefficient de trainée

R =0.11 # rayon m
np.pi * R**2 # cross-sectional area
0.145 # masse kg

B wn
1

def dv_dt(t, v):
a = - g * np.array([0,0,1]) - 1/2 * rho * Cx * S / m * np.linalg.norm(v) * v
return a

Le tir n’est toujours pas cadré, il passe a coté des cages.

\.

J

Le footballeur a mis de l'effet dans la balle en lui imprimant une rotation de £ = 100 min~! autour de

I'axe (Oz). Cette rotation engendre une force de portance appelée force de Magnus et s’exprimant comme

%C’pRBfZ AU avec C = 1.
6/ Modifier la fonction dv_dat pour inclure la force de Magnus.

Le tir est-il maintenant cadré 7

7

Omega = np.array([0,0,100%2*np.pi/60])

def dv_dt(t, v):

a = - g * np.array([0,0,1]) - 1/2 * rho * Cx * S / m * np.linalg.norm(v) * v + 1/2 * rho * R¥x3 *
np.cross(Omega,v) / m

return a

Oui, en prenant en compte toutes ces forces, le tir est cadré.

	1. 🖥️ Circuit RC
	2. 🖥️ Circuit électrique d'ordre 3
	3. 🖥️ Tir cadré ? ★

