

Méthodes à retenir :

• Pour déterminer si un matrice A est diagonalisable, on commence par calculer son polynôme caractéristique  $\chi_A(x) = \det(xI_n - A)$  sous forme factorisée. S'il est simplement scindé, alors A est diagonalisable sur  $\mathbb K$  et les sous-espaces propres sont tous de dimension 1.

Sinon A est diagonalisable si et seulement si pour toute valeur propre  $\lambda$  de multiplicité  $m_{\lambda} \geq 2$ , la dimension  $d_{\lambda}$  du sous-espace propre  $E_{\lambda}$  (que l'on détermine en résolvant le système  $AX = \lambda X$ ) vérifie  $m_{\lambda} = d_{\lambda}$ .

• Pour justifier qu'une matrice A n'est pas diagonalisable, il suffit de connaître une valeur propre  $\lambda$  pour laquelle  $\dim(\operatorname{Ker}(A-\lambda I_n)) < m_{\lambda}$ , où  $m_{\lambda}$  est la multiplicité de  $\lambda$  dans  $\chi_A$ .

ullet Si  $\chi_A$  n'est pas simplement scindé, A peut être non diagonalisable, comme  $egin{pmatrix} 0 & 1 \ 0 & 0 \end{pmatrix} \dots$ 

• Si A est diagonalisable, la matrice de l'endomorphisme canoniquement associée dans une base de vecteurs propres adaptée à la décomposition  $E = \bigoplus_{\lambda \in \operatorname{Sp}(A)} E_{\lambda}$  est la matrice diagonale par blocs  $D_{\lambda} = \operatorname{Diag}(\lambda \operatorname{I}_{\dim(E_{\lambda})})$ . La matrice de

changement de base P est obtenue en mettant en colonnes les vecteurs d'une base adaptée de vecteurs propres, et on a la relation  $P^{-1}AP = D$ .

• Il faut savoir réécrire matriciellement les relations de récurrence pour une ou plusieurs suites.

# I. Applications directes

## 

La matrice  $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$  est diagonalisable sur  $\mathbb C$ , sur  $\mathbb R$ ?

Soit  $(u_n)_n$  une suite réelle vérifiant  $u_0=1$ ,  $u_1=2$  et la relation de récurrence :

 $u_{n+2} - 3u_{n+1} + 2u_n = 0, \ \forall n \in \mathbb{N}.$ 

Calculer  $u_n$  en fonction de n.

#### 

Soit  $(u_n)_n$  la suite réelle vérifiant  $u_0=1$ ,  $u_1=2$ ,  $u_2=3$  et la relation de récurrence :

 $u_{n+3} = u_{n+2} - u_{n+1} + u_n, \ \forall n \in \mathbb{N}.$ 

Calculer  $u_n$  en fonction de n.

## Exercice 4

Déterminer les valeurs propres de l'endomorphisme f dont on donne la matrice dans la base canonique, dans les cas suivants :

a) 
$$M = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$
; b)  $N = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ 

## Exercice 5

Dans chacun des cas de l'exercice précédent, déterminer les sous-espaces propres associés aux valeurs propres qui ont été obtenues. L'endomorphisme f est-il diagonalisable?

## Exercice 6

Lorsque cela est possible diagonaliser dans  $\mathbb R$  ou  $\mathbb C$  les matrices suivantes :

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}; B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}; C = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix};$$

$$F = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & -1 & 1 \end{pmatrix}$$

# 

Soit f l'endomorphisme de  $\mathbb{R}^3$  dont la matrice dans la base canonique est donnée par :  $M = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$ .

- 1. Montrez que  $v_1(-1;1;1)$  et  $v_2(0;1;0)$  sont des vecteurs propres de f. A quelles valeurs propres sont-ils associés ?
- 2. Vérifier que  $\operatorname{Ker} f$  est une droite vectorielle.
- 3. En déduire que f est diagonalisable.





# II. Exercices

#### 

On considère la matrice  $A=\left(\begin{array}{ccc} -1 & 2 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \end{array}\right)$ 

- 1. Calculer les valeurs propres de A et diagonaliser A.
- 2. Calculer  $A^n$ ,  $n \in \mathbb{N}^*$ .
- 3. On considère les trois suites réelles u,v,w définies par leurs premiers termes  $u_0,v_0,w_0$  et les relations suivantes :  $\begin{cases} u_n &= -u_{n-1} + 2v_{n-1} + w_{n-1} \\ v_n &= u_{n-1} + w_{n-1} \\ w_n &= u_{n-1} v_{n-1} w_{n-1} \end{cases}$  Calculer  $u_n,v_n,w_n$  en fonction de n et des premiers termes  $u_0,v_0,w_0$ .

### Exercice 9 3

Soit  $M \in \mathfrak{M}_n(\mathbb{R})$ , avec  $n \in \mathbb{N}^*$ .

- 1. Montrer que M est inversible ssi  $0 \notin Sp_{\mathbb{R}}(M)$ .
- 2. Montrer que M est inversible ssi  $M^2$  est inversible.

### Exercice 10 ☆☆

Soit E un e.v. de dimension finie n=2 ou n=3. Quelles peuvent être les valeurs propres d'une symétrie? D'une projection?

# Exercice 11 ☆☆

Soit  $A \in \mathfrak{M}_n(\mathbb{R})$  telle que rg(A) = tr(A) = 1.

Justifier que 0 est valeur propre de multiplicité n-1, puis que A est diagonalisable sur  $\mathbb R$ , en précisant le spectre de A.

## Exercice 12

Soit E un e.v. de dimension finie n=2 ou n=3. Quelles peuvent être les valeurs propres d'une homothétie?

### Exercice 13 ☆☆

Soit  $A \in \mathfrak{M}_n(\mathbb{R})$  telle que  $A^2 = A$  et tr(A) = n. Démontrer que A est diagonalisable et que  $A = I_n$ .

#### 

- 1. Déterminer les valeurs propres et vecteurs propres de  $A=\begin{pmatrix} 1 & 1 \\ 4 & -1 \end{pmatrix}$  .
- 2. Déterminer les matrices  $N\in\mathfrak{M}_2(\mathbb{R})$  qui commutent avec  $D=\begin{pmatrix}\sqrt{5}&0\\0&-\sqrt{5}\end{pmatrix}$ .
- 3. En déduire les matrices  $M\in\mathfrak{M}_2(\mathbb{R})$  qui commutent avec A.
- 4. En déduire les matrices  $R\in\mathfrak{M}_2(\mathbb{C})$  telles que  $R^2=A.$

### Exercice 15 ☆☆

Résoudre dans  $\mathfrak{M}_3(\mathbb{R})$  l'équation :

- 1.  $M^2=A$ , d'inconnue M, où  $A=\begin{pmatrix}0&1&1\\0&0&1\\0&0&0\end{pmatrix}$ ; (on pourra remarquer que  $A^2=0_3$ )
- 2.  $N^2=B$ , d'inconnue N, où  $B=\begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$ ; (on pourra diagonaliserer que B et justifier que tout sous-espace propre pour B est sous-espace propre pour N)

## Exercice 16 ☆☆

Est-ce que la matrice  $M=\begin{pmatrix}0&0&0\\1&0&1\\1/4&-a-1/4&1\end{pmatrix}$  est diagonalisable ?

#### 

Soit la matrice  $A(\ell) = \begin{pmatrix} 0 & \sin(\ell) & \sin(2\ell) \\ \sin(\ell) & 0 & \sin(2\ell) \\ \sin(2\ell) & \sin(\ell) & 0 \end{pmatrix}$ .

Discuter de la diagonalisabilité de  $A(\ell)$  suivant les valeurs de  $\ell \in \mathbb{R}$ .



# III. Pour aller plus loin

Soit 
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
.

- 1. Montrer que A est diagonalisable sur  $\mathbb{C}$ .
- 2. Calculer  $tr(A^n)$  en fonction de n.

Exercice 19  $\Rightarrow \Rightarrow \land \land \land$  Mines-Ponts PC 2013 Soit  $A \in \mathfrak{M}_n(\mathbb{R})$ . Montrer que  $\det(A^2 + I_n) \geq 0$ .

Soit 
$$(a_i)_{0 \le i \le n-1} \in \mathbb{C}^n$$
, et  $A = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & & & & a_1 \\ 0 & & & & & \\ & & & & & & \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}$ .

Déterminer le polynôme caractéristique de A.

### Exercice 21 CCP 2010

On dit que  $A \in \mathfrak{M}_n(\mathbb{C})$  vérifie (P) si :  $\exists M \in \mathfrak{M}_n(\mathbb{C}); \ \forall \lambda \in \mathbb{C}, \ \det(M + \lambda A) \neq 0.$ 

- 1. Montrer que toute matrice N de  $\mathfrak{M}_n(\mathbb{C})$  admet au moins une valeur propre complexe (i.e. :  $\exists \mu \in \mathbb{C}; \ \det(N \mu I_n) = 0$ )
- 2. Calculer  $\det(I_n + \lambda T)$  où T est triangulaire supérieure à diagonale nulle, et en déduire que T vérifie (P).
- 3. Calculer le rang de  $T_r=\begin{pmatrix} 0 & I_r \\ 0 & 0 \end{pmatrix}\in \mathfrak{M}_n(\mathbb{C}).$
- 4. Soient A Vérifiant (P) et B de même rang que A; montrer que :  $\exists (P,Q) \in GL_n(\mathbb{C}); B = PAQ$  et en déduire que B vérifie (P).
- 5. Montrer que les matrices non inversibles de  $\mathfrak{M}_n(C)$  vérifient (P).
- 6. Montrer que les matrices inversibles de  $\mathfrak{M}_n(C)$  ne vérifient pas (P).
- 7. Même question pour  $\mathfrak{M}_n(\mathbb{R})$  selon la parité de n.

### Exercice 22 | ☆☆☆

Soit  $A \in \mathfrak{M}_4(\mathbb{C})$  de polynôme caractéristique  $X^4 - 7X^3 + 12X^2 = 0_n$  prouver que  $\mathrm{Tr}(A)$  est entier naturel.

Exercice 23 A A A diagonalisation simultanée Soient E un  $\mathbb{C}$ -espace vectoriel de dimension finie, et u et v deux endomorphismes diagonalisables de E.

Notons  $s=\operatorname{Card}(Sp_{\mathbb C}(u))$ , et  $\lambda_1,\dots,\lambda_s$  les valeurs propres distinctes de u respectivement associés aux espaces propres  $E_{\lambda_s,u}$ .

On suppose que  $\boldsymbol{u}$  et  $\boldsymbol{v}$  commutent.

- 1. Que dire de la somme  $E_{\lambda_1,u} + \cdots + E_{\lambda_s,u}$ ?
- 2. Soit  $j \in [\![1,s]\!]$  Justifier que  $E_{\lambda_j,u}$  est stable par v.
- 3. On suppose dans la suite que les sous-espaces propres de u sont tous des droites vectorielles. Comparer s et n. En déduire que les  $v_{|E_{\lambda_j,u}}$  sont diagonalisable. Conclure alors que u et v sont diagonalisables dans une même base.

#### 

Soit 
$$M(a,b,c)=\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$$
 et

 $E = \{ M(a, b, c) / (a, b, c) \in \mathbb{R}^3 \}.$ 

- 1. On note J=M(0,1,0). Calculer  $J^2$ . Exprimer M(a,b,c) en fonction de  $I_3$ , J et  $J^2$ .
- 2. E est-il un sous-espace vectoriel de  $\mathfrak{M}_3(\mathbb{R})$  ? Si oui, quelle est sa dimension ? Est-il stable par produit ?
- 3. La matrice J est-elle diagonalisable sur  $\mathbb C$ ? Donner ses valeurs propres en fonction de  $j=\mathrm e^{\frac{2i\pi}{3}}$  ainsi que les vecteurs propres associés.
  - 4. La matrice M est-elle diagonalisable sur  $\mathbb C$ ?
- 5. Montrer que M est diagonalisable sur  $\mathbb R$  si et seulement si b=c.
- 6. On note  $f_{a,b,c}$  l'endomorphisme associé à la matrice M(a,b,c). Conditions sur a,b,c pour que  $f_{a,b,c}$  soit un projecteur? Donner alors son image et son noyau.

TD ch.5 **Réduction** 3/6



# IV. Trigonalisation

### Exercice 25 ☆☆☆

On rappelle (c.f. exercice du chapitre 3) que si f est l'endomorphisme de  $E=\mathbb{R}^3$  canoniquement associé à

la matrice 
$$M = \begin{pmatrix} 3 & 4 & -4 \\ 4 & 1 & -8 \\ 1 & 2 & -1 \end{pmatrix}$$

alors

$$\operatorname{Ker}((f - \operatorname{id}_E)^3) \supset \operatorname{Ker}((f - \operatorname{id}_E)^2) \supset \operatorname{Ker}((f - \operatorname{id}_E)).$$

- 1. Déterminer une base de E dans laquelle la matrice de f est triangulaire supérieure.
- 2. f est-elle diagonalisable sur  $\mathbb{C}$ ?

### 

On note f l'endomorphisme de  $\mathbb{R}^3$  dont la matrice dans la base canonique  $\mathcal{B}=(e_1,e_2,e_3)$  de  $\mathbb{R}^3$  est

$$A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 2 & -1 \\ -2 & -1 & 1 \end{pmatrix} \text{ et } v_1 = -e_1 + e_2 + e_3, \quad v_2 = e_1 - e_3, \quad v_3 = e_1 - e_2$$

- 1. Vérifier que  $\mathcal{B}' = (v_1, v_2, v_3)$  est une base de  $\mathbb{R}^3$ .
- 2. Déterminer la matrice de passage Q de  $\mathcal{B}$  à  $\mathcal{B}'$  ainsi que son inverse.
- 3. Déterminer la matrice A' de f dans la base  $\mathcal{B}'$ .
- 4. Calculer  $(A')^n$  puis  $A^n$  pour tout entier naturel n.
- 5. l'endomorphisme f est-il diagonalisable?



# V. Avec Sympy

Il est disponible en ligne : http://live.sympy.org/

calculs de Diagonalisation :

pour

 $\gg$  M = Matrix([[-1,2,1],[1,0,1],[1,-1,-1]]) , la commande  $\gg$  M.eigenvects() affiche :

$$\left[ \left( \begin{array}{c} -2, \ 1, \ \begin{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix} \right), \left( \begin{array}{c} -1, \ 1, \ \begin{bmatrix} \begin{bmatrix} -1/2 \\ -1/2 \\ 1 \end{bmatrix} \end{bmatrix} \right), \left( \begin{array}{c} 1, \ 1, \ \begin{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \end{bmatrix} \right) \right] \right]$$

Ainsi la matrice est diagonalisable via la matrice de passage  $P = \begin{pmatrix} -1 & -1/2 & 1 \\ 0 & -1/2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ 

calculs de Trigonalisation :

Par exemple, pour

$$\gg$$
 A = Matrix([[-1,2,0],[-1,2,1],[1,-1,2]])

On affiche

$$A = \left( \begin{array}{rrr} -1 & 2 & 0 \\ -1 & 2 & 1 \\ 1 & -1 & 2 \end{array} \right)$$

pou

»> A.eigenvects()

On affiche

$$\left[ \left( \begin{array}{c} 1, \ 3, \ \left[ \left[ \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right] \right] \right) \right]$$

Ce qui correspond à une seule valeur propre 1, de multiplicité 3,

et au sous-espace propre 
$$\operatorname{Ker}(1 \times I_3 - A) =$$

$$Vect_{\mathbb{R}} \left( \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right)$$

La matrice A n'est donc pas diagonalisable, car 1 < 3.

En revanche pour >> V1 = Matrix([[1],[1],[0]])

, >> V2 = Matrix([[-1],[0],[1]]) et
>> V3 = Matrix([[1],[0],[1]])

on a : 
$$A*V1=\begin{pmatrix}1\\1\\0\end{pmatrix}=V1$$
 ,  $A*V2=\begin{pmatrix}1\\2\\1\end{pmatrix}=$ 

$$2*V1+V2$$
 ,  $A*V3 = \begin{pmatrix} -1\\0\\3 \end{pmatrix} = 2*V2+V3$ 

Comme  $det(V1, V2, V3) = 1 \neq 0$ , A est semblable

à la matrice 
$$T = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$





# Notes

 $^{2}$  correction :

 $^3$  correction :  $x^3-6x^2+11x-6=(x-1)(x-2)(x-3)=0$  via la matrice  $u_n=\alpha 1^n+\beta 2^n+\gamma 3^n$ 

 $^{11}$  correction : théorème du rang puis trace

 $^{17}\chi_A = (X - \sin(\ell))(X - \sin(2\ell))(X + \sin(\ell) - \sin(2\ell))$ 

Les valeurs propres sont  $\sin(\ell), \sin(2\ell), \sin(\ell)(2\cos\ell-1)$  et sont distinctes si  $l \neq 0[2\pi]$ , sinon, la matrice est nulle. Dans tous les cas elle est diagonalisable.

TD ch.5 **Réduction** 6/6