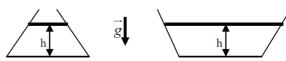
Statique des fluides

1. Force pressante sur le fond d'un récipient @

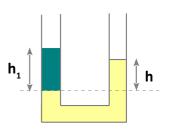
Pour une même hauteur d'eau et à surface de fond identique, comparer les forces de pression exercées sur les fonds des récipients A et B.



2. Mesure d'un masse volumique ©

On place dans un tube en U, à gauche de l'huile de masse volumique ρ_1 et à droite de l'eau de masse volumique ρ.

On mesure h_1 = 6cm la hauteur d'huile et h = 5,2 cm la hauteur d'eau. En déduire la masse volumique de l'huile en fonction de ρ , h et h₁.puis faire l'application numérique.

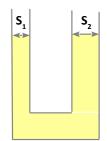


3. Liquide dans un tube en U @@

Un liquide de masse volumique ρ est contenu dans un tube en U de section S_1 à gauche et de section S_2 à droite.

On exerce une surpression ΔP du côté droit, le liquide descend alors d'une hauteur Δz .

- 1) Faire un schéma représentatif du déplacement Δz .
- 2) Déterminer une relation entre la quantité Δz_1 dont remonte le liquide du côté gauche, Δz , S_1 et S_2 .
- 3) Montrer que : $\Delta z_1 = \frac{\Delta P}{\rho g \left(1 + \frac{S_1}{S_2}\right)}$



4. Tube en U fermé à une extrémité : transformation isotherme ©©©

Un tube en U de section S est fermé à l'une de ses extrémités et ouvert à l'autre. Il contient du mercure et dans la branche fermée un volume V = 100cm³ d'air assimilé à un gaz parfait. Le niveau du mercure dans la branche ouverte est plus bas que dans la branche fermée. La différence entre les 2 niveaux de mercure est h = 20 cm. La pression extérieure est $P_0 = 10^5$ Pa. La température T de l'air extérieur et de l'air emprisonné est constante.

On ajoute du mercure dans la branche ouverte jusqu'à ce que les 2 surfaces libres du mercure soient dans un même plan horizontal. On note ρ la masse volumique du mercure.

- 1. Faire un schéma du dispositif avant et après ajout du mercure.
- 2. Exprimer le volume V' occupé, après ajout, par l'air contenu dans la branche fermée en fonction de V, P₀, ρ, g et h.
- 3. Déterminer le volume V₁ de mercure que l'on a ajouté en fonction de V, S, P₀, p, g et h. Faire l'application numérique et donner le résultat en cm³.

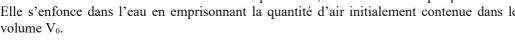
<u>Données:</u> masse volumique du mercure: $\rho = 14$ g. cm⁻³, S = 10 cm², g = 10 m.s⁻².

Rep:
$$V' = \left(1 - \frac{\rho g h}{P_0}\right) V \cdot V_1 = S h + 2 \times (V - V') = S h + 2 \frac{\rho g h}{P_0} V$$

5. Équilibre d'une cloche renversée sur l'eau 🕮

On considère une cloche cylindrique, de section S, de hauteur h et de masse m, contenant initialement un volume V₀=hS d'air à la température T_0 , sous la pression atmosphérique P_0 .

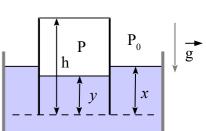
On renverse cette cloche dans une cuve remplie d'eau, de masse volumique ρ constante. Elle s'enfonce dans l'eau en emprisonnant la quantité d'air initialement contenue dans le volume V₀.



On suppose qu'elle se stabilise et flotte comme indiqué ci-contre.

On fait les hypothèses suivantes :

- L'air est un gaz parfait
- La pression de l'air est uniforme
- La température de l'air est constant, égale à T₀, à l'intérieur de la cloche, au cours de la transformation.
- L'épaisseur des parois de la cloche est supposée très faible de telle sorte qu'on négligera la poussée d'Archimède sur la cloche.
- 1. On cherche à établir 3 équations reliant x, y, et P la pression de l'air sous la cloche, pour cela :
- 1.1. Traduire l'équilibre mécanique de la cloche.
- 1.2. Appliquer la loi fondamentale de l'hydrostatique.
- 1.3. Utiliser l'équation d'état des gaz parfaits.
- 2. En déduire les expressions des hauteurs x et y en fonction de P_0 , S, m, g, h et ρ .
- 3. Déterminer la condition à vérifier par le volume V_0 de la cloche, pour que celle-ci puisse effectivement flotter.



6. Étude d'un manomètre différentiel @@

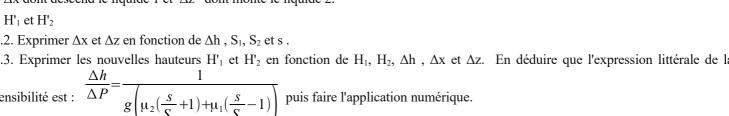
Un manomètre différentiel est constitué de deux récipients cylindriques, de sections droites respectives S_1 et S_2 , reliés par un tube de section intérieure s constante.

L'ensemble contient deux liquides non miscibles de masses volumiques μ_1 et μ_2 .

- 1) Initialement, la pression au-dessus des deux liquides est la même et égale à P₀, H₁ et H₂ sont définis à partir de la surface de séparation des deux liquides. En déduire une relation entre μ_1 et μ_2 , H_1 et H_2 .
- 2) On provoque au dessus du liquide 1 une surpression ΔP et la surface de séparation des 2 liquides se déplace de Δh .
- 2.1. Faire un schéma clair sur lequel apparaît Δh , ainsi que les hauteurs:
- Δx dont descend le liquide 1 et Δz dont monte le liquide 2.
- H'₁ et H'₂
- 2.2. Exprimer Δx et Δz en fonction de Δh , S_1 , S_2 et s.
- 2.3. Exprimer les nouvelles hauteurs H'1 et H'2 en fonction de H1, H2, Δh , Δx et Δz. En déduire que l'expression littérale de la

sensibilité est :
$$\frac{\Delta h}{\Delta P} = \frac{1}{g\left(\mu_2\left(\frac{S}{S_2} + 1\right) + \mu_1\left(\frac{S}{S_1} - 1\right)\right)}$$
 puis faire l'application numérique.

<u>Données:</u> $\mu_1 = 998 \text{ kg.m}^{-3}$; $\mu_2 = 1024 \text{ Kg.m}^{-3}$; $S_1 = S_2 = 100 \text{ s}$; $g = 9.81 \text{ ms}^{-2}$



7. Double vitrage ©

Un double vitrage est constitué de deux vitres séparées par de l'air emprisonné à la pression atmosphérique du lieu de fabrication, qui se trouve au niveau de la mer : $P_0 = 1.013$ bar. Il ne peut pas résister à un écart relatif entre la pression intérieure et la pression extérieure supérieur à 10%.

En supposant que l'air atmosphérique suit la loi de l'équilibre de l'atmosphère isotherme, jusqu'à quelle altitude maximale h_{max} peut-il être transporté sans risque à 0°C?

<u>Données</u>: intensité de la pesanteur $g=10ms^{-2}$; masse molaire de l'air $M=29g.mol^{-1}$; constante des gaz parfaits $R=8.314 J.mol^{-1}K^{-1}$.

8. Stratosphère et troposphère ©©

La troposphère est la couche de l'atmosphère terrestre située au plus proche de la surface du globe jusqu'à une altitude d'environ 8 à 15 kilomètres, selon la latitude et la saison. En moyenne, la température diminue avec l'altitude, à peu près de 6,4 °C tous les 1000 mètres.

La stratosphère est la seconde couche de l'atmosphère terrestre, se situant au-dessus de la troposphère.

La troposphère considérée dans l'exercice a une altitude comprise entre 0 et 11000 m d'altitude, la température y varie linéairement avec l'altitude z suivant la relation : T = a - bz où a = 288K et $b = 6,5.10^{-3}$ K.m⁻¹

La stratosphère est telle que $11000 \, m \le z \le 25000 \, m$. On peut y considérer la température constante telle que : T= T_S = 216,5 K.

1) Établir la loi de variation de la pression en fonction de z dans la troposphère puis dans la stratosphère. On introduira la pression atmosphérique P_0 à l'altitude z = 0.

2

2) Quelle est la pression à 4700m d'altitude ?

Données: $g = 9.81 \text{ m.s}^{-2}$; $R = 8.314 \text{ J.K}^{-1}.\text{mol}^{-1}$; masse molaire de l'air: $M = 29.0 \text{ g.mol}^{-1}$

Elément de réponse:
$$P(z) = P_0 \left(\frac{a - bz}{a}\right)^{\frac{Mg}{Rb}}$$
 pour $z < 11000$.

