
# TP fermeture géométrique

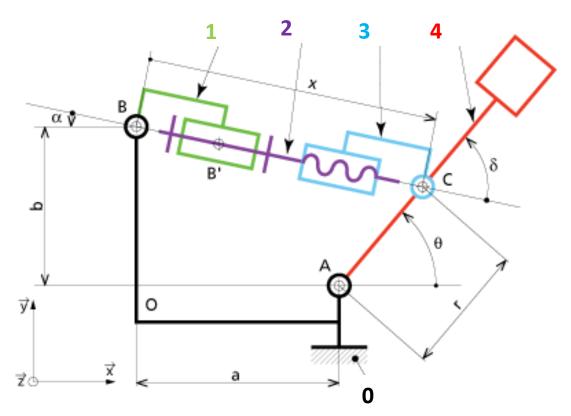
# Compétences évaluées durant le TP:

| Analyser | Modéliser | Résoudre | Expérimenter | Concevoir | Communiquer |
|----------|-----------|----------|--------------|-----------|-------------|

#### Systèmes étudiés :

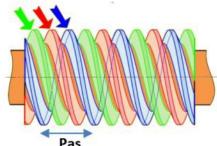


Objectifs du TP: déterminer la loi entrée-sortie d'un système complexe ;


Les résultats seront présentés sous la forme d'un compte rendu.

# **Déroulement du TP :**

- Q.1. En manipulant le système réel, identifier les **différents éléments** présentés sur le schéma cinématique du système.
- Q.2 Réaliser le graphe des liaisons du système
- Q.3. Réaliser les figures de changement de base.
- Q.4. Ecrire la loi entrée-sortie du système.
- Q. BONUS. **Linéariser la loi entrée-sortie** du système (uniquement si toutes les autres questions ont été traité durant le TP).


# Schéma cinématique, paramétrage et objectif pour le bras Maxpid

### Schéma cinématique:



#### Paramétrage:

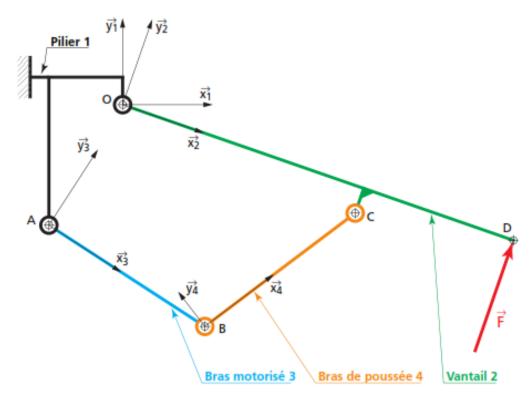
Soit x(t) le paramètre de translation de la crémaillère en mètre et  $\alpha_m(t)$  le paramètre de rotation du moteur en radian (qui correspond aussi au paramètre de rotation de la vis). La loi entrée-sortie du système vis-écrou de pas p est donnée par la relation suivante :



$$x(t) = \frac{p}{2\pi}\alpha_m(t)$$

On définit aussi:

- le bras 4, de repère associé  $R_4 = (A, \overrightarrow{x_4}, \overrightarrow{y_4}, \overrightarrow{z_4})$ , tel que  $(\overrightarrow{x_0}, \overrightarrow{x_4}) = \theta$ ;
- l'écrou 3, , de repère associé  $R_3=(C,\overrightarrow{x_3},\overrightarrow{y_3},\overrightarrow{z_3})$ , tel que  $(\overrightarrow{x_2},\overrightarrow{x_4})=\delta$ ;


$$-\overrightarrow{AC} = r \cdot \overrightarrow{x_4}$$
 ,  $\overrightarrow{BC} = x(t) \cdot \overrightarrow{x_3}$  et  $\overrightarrow{AB} = -a \cdot \overrightarrow{x} + b \cdot \overrightarrow{y}$ 

#### Objectif:

Déterminer la relation entre la position angulaire du moteur  $\alpha_m(t)$  et la position angulaire du bras  $\theta(t)$ . On cherchera à exprimer  $\theta(t)$  en fonction de  $\alpha_m(t)$  et des paramètres fixes du système.

#### Schéma cinématique, paramétrage et objectif pour le portail Domoticc

# Schéma cinématique:

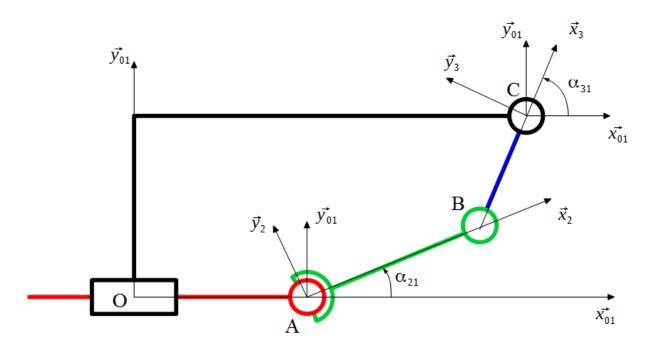


#### Paramétrage:

Soit  $\theta_m(t)$  la position angulaire de l'axe moteur en radian et  $\theta_r(t)$  la position angulaire en sortie de réducteur en radian. La loi entrée-sortie du réducteur de rapport 1/R est donnée par la relation suivante :  $\theta_r(t) = \theta_m(t)/R$ 

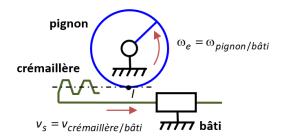
#### On définit aussi:

- le pilier 1, de repère associé  $R_1 = (0, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ ;
- le vantail 2, de repère associé  $R_2 = (O, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$ , tel que  $(\overrightarrow{x_1}, \overrightarrow{x_2}) = \alpha_{21}^{\circ}$ ;
- le bras motorisée 3, de repère associé  $R_3=(A,\overrightarrow{x_3},\overrightarrow{y_3},\overrightarrow{z_3})$ , tel que  $(\overrightarrow{x_1},\overrightarrow{x_3})=\theta_r^{\circ}$ ;
- le bras de poussée 4, de repère associé  $R_4=(B,\overrightarrow{x_4},\overrightarrow{y_4},\overrightarrow{z_4})$ , tel que  $(\overrightarrow{x_3},\overrightarrow{x_4})=\alpha_{43}^\circ$ ;


$$-\overrightarrow{AB} = l_3 \cdot \overrightarrow{x_3}$$
 ,  $\overrightarrow{BC} = l_4 \cdot \overrightarrow{x_4}$  ,  $\overrightarrow{OC} \approx l_2 \cdot \overrightarrow{x_2}$  et  $\overrightarrow{AO} = a \cdot \overrightarrow{x_1} + b \cdot \overrightarrow{y_1}$ 

#### Objectif:

Déterminer la relation entre la position angulaire du moteur  $\theta_m(t)$  et la position angulaire du vantail  $\alpha_{21}(t)$ . On cherchera à exprimer  $\alpha_{21}(t)$  en fonction de  $\theta_m(t)$  et des paramètres fixes du système.


# Schéma cinématique, paramétrage et objectif pour la DAE de Twingo

#### Schéma cinématique:

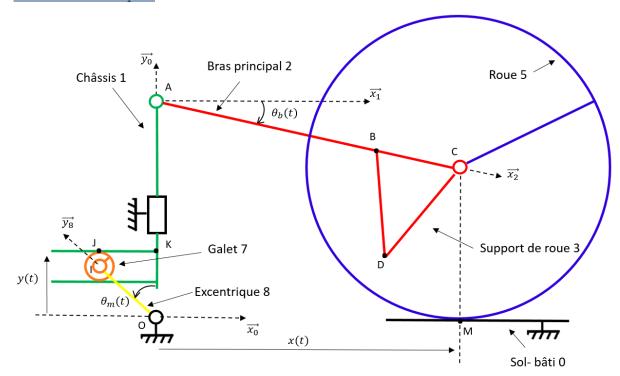


# Paramétrage:

Soit x(t) le paramètre de translation de la crémaillère en mètre et  $\theta_v(t)$  le paramètre de rotation du volant en radian (qui correspond aussi au paramètre de rotation du pignon). La loi entrée-sortie du système pignon crémaillère de rayon R est donnée par la relation suivante : x(t) = R.  $\theta_v(t)$ 



On définit aussi:


$$\overrightarrow{OA} = x(t) \overrightarrow{x_{01}}$$
 ,  $\overrightarrow{AB} = l_2 \cdot \overrightarrow{x_2}$  ,  $\overrightarrow{BC} = l_3 \cdot \overrightarrow{x_3}$  et  $\overrightarrow{OC} = X \cdot \overrightarrow{x_{01}} + Y \cdot \overrightarrow{y_{01}}$ 

# Objectif:

Déterminer la relation entre la position angulaire du volant  $\theta_v(t)$  et la position angulaire de la roue  $\alpha_{31}(t)$ . On cherchera à exprimer  $\theta_v(t)$  en fonction de  $\alpha_{31}(t)$  et des paramètres fixes du système.

#### Schéma cinématique, paramétrage et objectif pour la suspension BMW

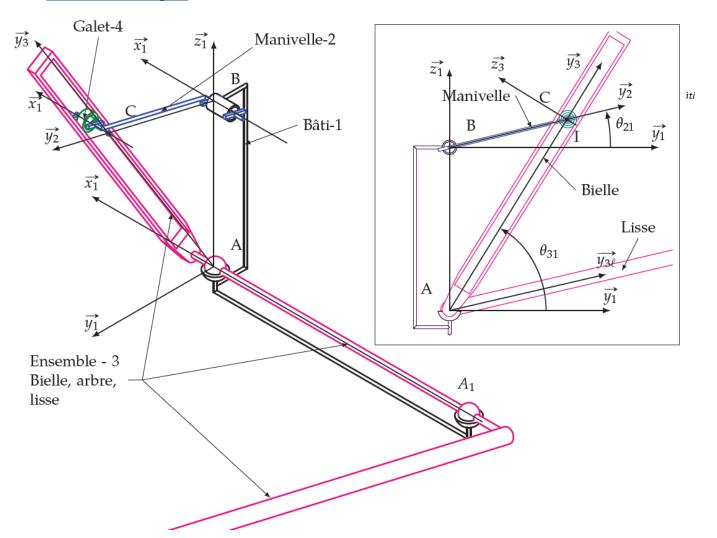
#### Schéma cinématique:



# Paramétrage:

Soit x(t) la position du point de contact entre la roue 5 et le sol 0( en mètre) et  $\theta_m(t)$  la position angulaire de l'excentrique 8 (en radian).

#### On définit aussi:


- le sol-bâti 0, de repère associé  $R_0 = (0, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ ;
- le châssis 1, de repère associé  $R_1 = (A, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ , tel que  $B_0 = B_1$ ;
- le bras principal 2, de repère associé  $R_2=(A,\overrightarrow{x_2},\overrightarrow{y_2},\overrightarrow{z_2})$ , tel que  $(\overrightarrow{x_1},\overrightarrow{x_2})=\theta_b(t)^\circ$ ;
- l'excentrique 8, de repère associé  $R_8 = (0, \overrightarrow{x_8}, \overrightarrow{y_8}, \overrightarrow{z_8})$ , tel que  $(\overrightarrow{y_0}, \overrightarrow{y_8}) = \theta_m(t)^\circ$ ;

#### Objectif:

Déterminer la relation entre la position de la roue x(t) et la position angulaire de l'excentrique  $\theta_m(t)$  à partir de **DEUX** fermetures géométriques en utilisant le paramètre intermédiaire y(t).

# Schéma cinématique, paramétrage et objectif pour la Barrière Sympact

# Schéma cinématique:



# Paramétrage:

Soit  $\theta_m(t)$  la position angulaire de l'axe moteur en radian et  $\theta_{21}(t)$  la position angulaire en sortie de réducteur en radian. La loi entrée-sortie du réducteur de rapport 1/R est donnée par la relation suivante :  $\theta_{21}(t) = \theta_m(t)/R$ 

On définit aussi:

- L'ensemble 3, de repère associé  $R_3=(C,\overrightarrow{x_3},\overrightarrow{y_3},\overrightarrow{z_3})$ , tel que  $(\overrightarrow{y_1},\overrightarrow{y_3})=\theta_{31}$ 

$$-\overrightarrow{AB} = H \cdot \overrightarrow{z_1}$$
 ,  $\overrightarrow{BC} = R \cdot \overrightarrow{y_2}$  et  $\overrightarrow{AC} = \lambda(t) \cdot \overrightarrow{y_3}$ 

#### Objectif:

Déterminer la relation entre la position angulaire de l'axe moteur  $\theta_m(t)$  et la position angulaire de la bielle  $\theta_{31}(t)$ . On cherchera à exprimer  $\theta_m(t)$  en fonction de  $\theta_{31}(t)$  et des paramètres fixes du système.