Polynômes d'endomorphisme, Interpolation $hole_{PC}$

PC 2023-2024

Ordre des exercices : 2, 1, 5; 11, 15; 8,7; 10, 11, 16

Méthodes à retenir :

• Utiliser un polynôme annulateur pour calculer les puissances d'une matrice ou son inverse si elle est inversible

I. Applications directes du cours

Trouver un polynôme annulateur de $M=\begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$, après avoir calculé $(M-I_3)(M-2I_2)(M-3I_3)$.

Exercice 2

Trouver l'inverse de A inversible telle que $A^3+I_n=\mathbf{0}_n$

II. Exercices

Exercice 4

Trouver un polynôme annulateur de $M=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$, après avoir calculé $(M-I_3)$, $(M-I_3)^2$, $M(M-I_3)^2$.

Exercice 5 ☆☆

Soit $n \in \mathbb{N}$. Trouver le reste de la division euclidienne de X^n par $X^2 + X - 2$. Soit $A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$.

On admet la relation $A^2 + A - 2I_3 = 0$. Montrer que A est inversible, et donner A^{-1} .

Exercice 6 ☆☆

 $\overline{\mathsf{Soit}\ J\in\mathcal{M}_n(\mathbb{R})}$ la matrice ne contenant que des 1.

- 1. Calculer J^2 .
- 2. En déduire un polynôme Q annulateur de J.
- 3. En déduire la valeur de J^k pour tout $k \geq 2$, en fonction de I_n, J et k.

Soient
$$a_0=0$$
, $a_1=1$, $a_2=2$, et $b_0=1$, $b_1=\pi$, $b_2=\pi^2$. Posons pour $\mathbf{j}\in [\![0,2]\!]$, $L_j=\prod_{0\leq i\leq 2, i\neq j}\frac{1}{a_j-a_i}(X-a_i)$

- 1. Vérifier que $L_p(a_q) = \delta_p^q$, pour tout $p, q \in [0, 2]$
- 2. Montrer que la famille $\mathcal{F} = (L_0, L_1, L_2)$ est libre.
- 3. En déduire que \mathcal{F} est une base de $\mathbb{R}_2[X]$.
- 4. Donner la décompostion de S = 1 + X dans cette base.
- 5. S est-il l'unique polynôme de degré au plus 2 valant 1 en 0, 3 en 2 et 9 en 8? Même question parmi les polynômes de degré au plus 3.

Exercice 8

Donner un polynôme réel P de degré au plus 2 tel que P(-1)=1, P(0)=2 et P(1)=3. Est-il unique?

Exercice 9

Soit $A\in\mathfrak{M}_n(\mathbb{R})$ une matrice carrée telle qu'il existe un entier $p\geq 1$ tel que $A^p=0_n$. (matrice nilpotente d'indice p). Calculer $\det A$.

Exercices avancés

Exercice 10 公公公

On définit
$$V_n(x_0,\ldots,x_n)=\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix}\in\mathcal{M}_{n+1}(\mathbb{R}).$$

Soit
$$(a_k)_{0\leqslant k\leqslant n}\in\mathbb{C}^{n+1}$$
, $P\in\mathbb{C}[X]$ tel que $P=a_0+a_1X+\cdots+a_nX^n$ et le vecteur $A=\begin{pmatrix}a_0\\\vdots\\a_n\end{pmatrix}\in\mathcal{M}_{n+1,1}(\mathbb{C})$.

- 1) Exprimer le produit $V(x_0, \ldots, x_n).A$ à l'aide du polynôme P.
- 2) A l'aide d'un développement selon une ligne, justifier que $f:z\longmapsto V(x_0,\ldots,x_{n-1},z)$ est polynomiale de degré n-1 et de coefficient dominant $V_{n-1}(x_0,\ldots,x_{n-1})$.
- 3) En déduire que $\det(V_n(x_0,\ldots,x_n))=\det(V_{n-1}(x_0,\ldots,x_{n-1}))\times\prod_{i=0}^{n-1}(x_n-x_i)$, puis donner l'expression factorisée de $\det(V_n(x_0,\ldots,x_n))$.
- 4) Soit $(r_k)_{0 \le k \le n} \in \mathbb{R}^{n+1}$ une famille de réels deux à deux distincts tel que pour tout $k \in [0, n]$, $P(r_k) \in \mathbb{R}$. Montrer, en utilisant la question 1, que P est dans $\mathbb{R}[X]$.

Exercice 11

Soit $n \in \mathbb{N}$ et $(x_0, \dots, x_n) \in \mathbb{R}^n$ avec pour tous $i, j \in [0, n]$, $i \neq j \Rightarrow x_j \neq x_j$. Montrer que l'application linéaire $\varphi : \mathbb{R}_n[X] \longrightarrow \mathbb{R}^{n+1}, \ P \longmapsto (P(x_0), \dots, P(x_n))$ est un isomorphisme.

Polynômes d'endomorphisme, Interpolation

Exercice 12

Démontrer que l'ensemble des polynômes annulateurs de $M \in \mathcal{M}_n(\mathbb{R})$ est stable par multiplication par un polynôme non nul.

Exercice 14 かかか

Notons $E = \mathbb{R}[X]$. Soit $P = X^2 + 3X + 1$.

- 1. Justifier que $F = P \mathbb{R}[X]$ (ensemble des multiples de P) est un sous-espace vectoriel de E.
- 2. On considère l'application $f: \mathbb{R}[X] \to \mathbb{R}[X]$ qui à tout polynôme Q associe son reste dans la division euclidienne par P.
 - (a) Rappeler le théorème de la division euclidienne dans $\mathbb{R}[X]$.
 - (b) Montrer que f est une application linéaire.
 - (c) Déterminer l'image et le noyau de f.
- 3. Soit $G=\mathbb{R}_1[X]$. Justifier que F et G sont des s.e.v. supplémentaires de E.

Calculer N^2 et N^3 et en déduire un polynôme annulateur de N.

Pour $k \in \mathbb{N}$, calculer N^k en fonction de k, en explicitant ses coefficients.

Exercice 16 ☆☆

1. Soit
$$J=\begin{pmatrix}0&1&1\\1&0&1\\1&1&0\end{pmatrix}$$
. Calculer J^2 .

- 2. Montrer que le polynôme X^2-X-2 est annulateur de J.
- 3. En déduire que J est inversible, calculer J^{-1} .
- 4. Pour a,b complexes et $M=aJ+bI_3$, calculer M^n (on pourra étudier le reste de la division euclidienne de X^n par X^2-X-2).

Exercice 17 かかか

On note $\mathcal{A}_{\mathcal{M}}$ l'ensemble des polynômes annulateurs de $M \in \mathcal{M}_n(\mathbb{C})$.

Démontrer qu'il existe un polynôme unitaire P_0 tel que $\mathcal{A}_{\mathcal{M}} = \{QP_0; \ Q \in \mathbb{C}[X]\}$

Notes

 3 correction :

 $^{6} \text{ correction}: J^{2}=nJ, \ Q=X^{2}-nX \ X^{k}=B_{k}Q+R_{k}, \ \text{donc} \ J^{k}=a_{k}I_{n}+b_{k}J \ \text{avec en \'evaluant en } 0 \ 0=0^{k}+a_{k} \ \text{et en \'evaluant en } 1/n, \ 1/n^{k}=b_{k}/n, \ \text{d'où } J^{k}=\frac{1}{n^{k-1}}J$