

Table des matières

I.	Séri	es entières de la variable complexe	2
	1.1	Définition	2
	1.2	Rayon de convergence	3
	1.3	Séries entières de référence	4
	1.4	Détermination du rayon de convergence	5
	1.5	Règle de d'Alembert des séries entières	6
11.	Séri	es entières de la variable réelle	6
	11.1	Ouvert de convergence	6
	11.2	Convergence normale et continuité de la somme	
	11.3	Ratons de convergence et primitivation ou dérivation	7
	11.4		8
	11.5	Dérivation terme à terme	8
	11.6	Développement en série entière	10
	11.7	DSE géométriques et conséquences	10
	11.8	Solutions DSE d'équations différentielles	11
	11.0		11
		/ '	
		8.b) DSE via équations différentielles	11
		8.c) DSE de référence	13
III.	Som	nme, produit de Cauchy	14
	III.1	Rayon de convergence	14
	111.2	Propriétés	14
		2.a) Continuité	14
		2.b) Sur le rayon de convergence	
	111.3	Somme	15
		Produit de Cauchy	16
		4.a) C - Séries entières	17

Pré-requis

Objectifs

I. Séries entières de la variable complexe

I.1 Définition

Définition 1.

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{C}^{\mathbb{N}}$. On appelle série entière (de la variable complexe z) la série de fonctions $\sum_{n=0}^{\infty} u_n(\cdot)$ définie par :

$$\forall n \in \mathbb{N}, \ u_n : \mathbb{C} \longrightarrow \mathbb{C}$$

$$z \longmapsto a_n \ z^n$$

On la note parfois (abusivement) $\sum_{n>0} a_n z^n$ ou $\sum a_n z^n$.

Dans le cas d'une série entière de la variable réelle, on note $\sum a_n x^n$ la série de fonctions $\sum v_n$ où

$$\forall n \in \mathbb{N}, v_n \ \mathbb{R} \longrightarrow \mathbb{C}$$
$$x \longmapsto a_n x^n$$

Remarque 1. ATTENTION : ne la confondez pas avec une éventuelle numérique de terme général $a_n z^n$, pour $z \in \mathbb{C}$ fixé!!!

exemple 1. Pour tout $z \in \mathbb{C}$, si |z| < 1, la série numérique $\sum z^n$ converge.

On peut donc définir sur l'ensemble $D(0,1)=\{z\in\mathbb{C};\;|z|<1\}$ la fonction somme de la série entière $\sum_{n\geq 0}z^n$

 $S: z \longmapsto \sum_{n\geq 0} u_n$, avec $u_n: z \longmapsto z^n$ pour tout $n \in \mathbb{N}$.

Pour tout
$$z \in D(0,1)$$
, on a $S(z) = \sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}$

exemple 2. Pour tout $z \in \mathbb{C}$, la série numérique $\sum \frac{z^n}{n!}$ converge, car d'après la règle de d'Alembert, pour $z \neq 0$ et $\alpha_n = \frac{z^n}{n!}$, on a $\left|\frac{\alpha_{n+1}}{\alpha_n}\right| = \left|\frac{z}{n+1}\right| \xrightarrow[n \to +\infty]{} 0$.

On peut donc définir une série entière $\sum_{n\geq 0} \frac{z^n}{n!}$ sur l'ensemble $\mathbb C$ comme étant la somme de la série de fonctions

$$\sum_{n\geq 0} v_n, \text{ avec } v_n: z \longmapsto \frac{z^n}{n!}.$$

L'expression de sa somme sur \mathbb{C} est $S: z \longmapsto \sum_{n=0}^{+\infty} \frac{z^n}{n!} = \exp(z)$

I.2 Rayon de convergence

Proposition 1 (Lemme d'Abel).

Soient $(a_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{C}^{\mathbb{N}}$ et $z_0\in\mathbb{C}^*$.

Si la suite $(a_n z_0^n)$ est bornée alors, pour tout nombre complexe z tel que $|z| < |z_0|$, alors la série $\sum a_n z^n$ est absolument convergente.

$d\'{e}monstration:$

Soit $M \in \mathbb{R}^+$ tel que : $|a_n z_0^n| \leq M, \ \forall n \in \mathbb{N}.$

Pour $z \in \mathbb{C}$ tel que $|z| < |z_0|$, on a pour tout $n \in \mathbb{N}$:

$$|a_n z^n| = |a_n||z_0^n| \left| \frac{z}{z_0} \right|^n \le M \left| \frac{z}{z_0} \right|^n$$

Donc par comparaison avec la série géométrique convergente de raison $\left|\frac{z}{z_0}\right| \in [0,1[$, la série $\sum a_n z^n$ est absolument convergente. \Box .

lemme 2. Soient $(a_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{C}^{\mathbb{N}}$. L'ensemble $\{r\in\mathbb{R}^+;\ \text{la suite } (a_nr^n)_{n\in\mathbb{N}}\text{est born\'ee}\}$ est un intervalle de $[0,+\infty[$ contenant 0.

 $d\'{e}monstration$: pour r_0 tel que $(a_nr_0^n)$ est bornée, d'après le lemme d'Abel, pour tout $\rho \in [0, r_0[$, la série $\sum a_n \rho^n$ est bornée, donc son terme général tend vers 0, donc la suite $(a_n\rho^n)$ est bornée.

Ainsi $[0, r_0] \subset \{r \in \mathbb{R}^+; \text{ la suite } (a_n r^n)_{n \in \mathbb{N}} \text{est born\'ee} \}$, donc cet ensemble est un intervalle, de la forme [0, R] ou [0, R[. \square

variante : pour tout $n \in \mathbb{N}$, $|a_n z^n| = |a_n||z_0^n| \left|\frac{z}{z_0}\right|^n \le M \left|\frac{z}{z_0}\right|^n \le M.\square$

Définition 2 (Rayon de convergence).

Soient $(a_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{C}^{\mathbb{N}}$. On appele <u>rayon de convergence</u> de la série entière $\sum a_n z^n$ le nombre $R \in \mathbb{R}^+$ défini par :

 $R = \sup \{r \in \mathbb{R}^+; \text{ la suite } (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée} \}.$

Notation 1. On note $R\left(\sum a_n x^n\right)$ le rayon de convergence de la série entière de la variable réelle $\sum a_n x^n$, égal au rayon $R\left(\sum a_n z^n\right)$ de convergence de la série entière de la variable complexe $\sum a_n z^n$

Proposition 3.

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{C}^\mathbb{N}$ et R le rayon de convergence de la série entière $\sum a_n z^n$.

- 1. Si $z \in \mathbb{C}$ est tel que |z| < R alors $\sum a_n z^n$ converge.
- 2. Si $z\in\mathbb{C}$ est tel que |z|>R alors $\sum a_nz^n$ diverge grossièrement.

$d\'{e}monstration:$

- 1. Dans ce cas, pour $\rho\in]|z|,R[$, on a : $|a_nz^n|=|a_n|\rho^n imes(|z|/
 ho)^n\leq K\left(|z|/
 ho\right)^n$, car par définition du r.c.v., la suite $(|a_n|\rho^n)$ est bornée par une constante K.
- 2. Dans ce cas, par définition du r.c.v., la suite $(|a_n|z|^n)$ n'est pas bornée, donc ne peut tendre vers 0, donc la série $\sum a_n z^n$ diverge grossièrement.

Définition 3.

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{C}^\mathbb{N}$, et R le rayon de convergence de la série entière $\sum a_n z^n$. On appelle disque ouvert de convergence l'ensemble noté D(0,R) défini par :

$$D(0,R) = \{ z \in \mathbb{C}; |z| < R \}$$

Remarque 2. Dans le plan complexe, il s'agit du disque ouvert de centre 0 et de rayon R. Pour tout $z \in D(0,R)$, la série numérique $\sum a_n z^n$ converge.

I.3 Séries entières de référence

Proposition 4 (Série entière géométrique).

La série entière $\sum_{n\geq 0} z^n$ a pour rayon de convergence R=1.

Pour tout $z \in D(0,1)$, on a $\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$

 $\underline{d\acute{e}monstration:} \text{ On passe par les sommes partielles}: \sum_{n=0}^{N} z^n = \frac{1-z^{N+1}}{1-z}, \text{ quantit\'e qui converge ssi } |z| < 1. \ \Box$

Proposition 5 (Série entière exponentielle).

La série entière $\sum_{n>0} \frac{z^n}{n!}$ a pour rayon de convergence $R=+\infty$.

Pour tout $z \in \mathbb{C}$, sa somme $\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$

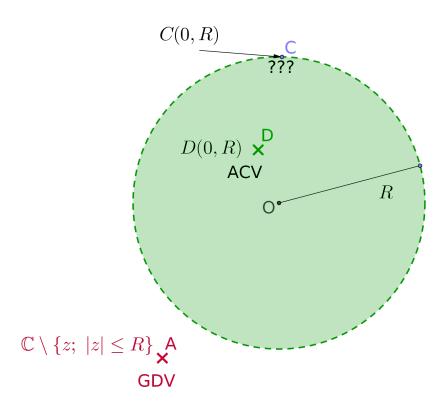
 $\frac{d\acute{e}monstration \ :}{\text{Dans le cas } z \neq 0, \text{ on remarque que } \lim_{n \to +\infty} \left| \frac{z^{n+1}/(n+1)!}{z^n/n} \right| = 0 \text{ pour } z \neq 0, \text{ donc on obtient l'absolue convergence}$ sur \mathbb{C} . \square

I.4 Détermination du rayon de convergence

Proposition 6 (HP? (à savoir redémontrer)).

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{C}^{\mathbb{N}}$ et R le rayon de convergence de la série entière $\sum a_n z^n$.

- 1. Si $z\in\mathbb{C}$ est tel que $\sum a_nz^n$ converge, alors $R\geq |z|$
- 2. Si $z\in\mathbb{C}$ est tel que $\sum a_nz^n$ diverge, alors $R\leq |z|$



<u>démonstration</u>: c'est la contraposée de la proposition précédente!

- 1. Si $z \in \mathbb{C}$ est tel que $\sum a_n z^n$ converge, $\lim a_n z^n = 0$ (sinon GDV), donc la suite $(a_n z^n)_n$ est bornée, donc par définition du rayon de convergence, $R \ge |z|$.
- 2. la contraposée de « Si $z\in\mathbb{C}$ est tel que $\sum a_nz^n$ diverge, alors $R\leq |z|$ » est

« Si $z\in\mathbb{C}$ est tel que R>|z|, alors $\sum a_nz^n$ converge »

Pour $z\in\mathbb{C}$ tel que R>|z| et $\rho\in]|z|,R[$. Par définition du rayon de convergence, $(a_n\rho^n)$ est bornée par une constante $M\geq 0$.

pour tout $n \in \mathbb{N}$ on a :

$$|a_n z^n| = |a_n \rho^n| \left| \frac{z}{\rho} \right|^n \le M \left| \frac{z}{\rho} \right|^n.$$

Donc par comparaison de séries numériques, $\sum a_n z^n$ est ACV donc CV. \Box

Ch.14 Séries entières 5/20

Règle de d'Alembert des séries entières I.5

Proposition 7 (règle de d'Alembert des séries entières).

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{C}^\mathbb{N}$ qui ne s'annule jamais, et R le rayon de convergence de la série entière $\sum a_n z^n$.

On suppose en outre qu'il existe $\ell \in \mathbb{R}^+ \cup +\infty$ tel que pour tout $z \in \mathbb{C}^*$ on ait : $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \ell$.

Alors le rayon de convergence de la série entière $\sum a_n z^n$ est :

$$-R = \frac{1}{\ell} \text{ si } \ell \in]0, +\infty[$$

$$-R = +\infty \text{ si } \ell = 0$$

$$-R = +\infty \text{ si } \ell = 0$$

$$-R=0$$
 si $\ell=+\infty$

 $d\'{e}monstration$

$$\overline{\lim_{n \to +\infty} \left| \frac{a_{n+1} z^{n+1}}{a_n z^n} \right|} = \ell |z|.$$

Soit $z \neq 0$, et pour $n \in \mathbb{N}, \ \alpha_n = a_n \ z^n$

On a
$$\lim \left| \frac{\alpha_{n+1}}{\alpha_n} \right| = \ell |z|$$
.

Si $|z|<rac{1}{\ell}$, d'après la règle de d'Alembert pour une série numérique, la série $\sum lpha_n$ est ACV donc CV, donc $R \geq \frac{1}{\ell}$.

Si $|z|>rac{1}{
ho}$, d'après la règle de d'Alembert pour une série numérique, la série $\sum lpha_n$ est GDV donc DV, donc $R \leq \frac{1}{\ell}$. \square

Le cas $\ell = +\infty$ donne un rayon de convergence 0.

Le cas $\ell = 0$ donne un rayon de convergence $+\infty$.

II. Séries entières de la variable réelle

II.1Ouvert de convergence

Définition 4.

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de $\mathbb{C}^\mathbb{N}$, et R le rayon de convergence de la série entière $\sum a_n z^n$. On appelle intervalle ouvert de convergence l'ensemble noté $]-R,R[\subset \mathbb{R}]$.

Remarque 3. Pour tout $t \in]-R,R[$, la série numérique $\sum a_n t^n$ converge, la somme de la série de fonctions CVS sur]-R,R[.

II.2 Convergence normale et continuité de la somme

Théorème 8 (Convergence normale).

Soit $\sum_{n\geq 0} a_n t^n$ une série entière de la variable réelle de rayon de convergence R, et $f=\sum_{n=0}^{+\infty} u_n$ sa somme,

avec $\forall n \in \mathbb{N}, u_n : t \longmapsto a_n t^n$.

Alors pour tout segment $K = [-r, r] \subset]-R, R[$, pour $0 \le r < R$, la série de fonctions $\sum u_n$ converge normalement sur K.

 $dcute{e}monstration:$ Pour $u_n:t\longmapsto a_nt^n$, on a $\|u_n\|_{\infty,[-r,r]}=|a_n|r^n$. d'après la propriété d'absolue convergence sur le disque ouvert de convergence, pour tout $t\in[-r,r]$, la série $\sum a_nr^n$ est ACV, donc $\sum \|u_n\|_{\infty,[-r,r]}$ CV. \square .

Théorème 9 (Continuité de la somme sur l'intervalle ouvert de convergence).

Soit $\sum_{n\geq 0} a_n t^n$ une série entière de la variable réelle de rayon de convergence R>0.

Alors sa somme $f: t \longmapsto \sum_{n=0}^{+\infty} a_n t^n$ est définie et continue sur]-R,R[.

 $d\acute{e}monstration$: La série des fonctions $u_n: t \longmapsto a_n \ t^n$ est une série de fonctions continues sur [-r,r] et qui converge normalement, donc uniformément sur [-r,r]. Donc sa somme est continue sur [-r,r]. \square

II.3 Ratons de convergence et primitivation ou dérivation

Proposition 10.

$$R\left(\sum a_n x^n\right) = R\left(\sum n a_n x^n\right)$$

 $dcute{e}m$ Notons R le rcv de $\sum a_nt^n$, et R' celui de $\sum na_nt^n$.

 $\bullet \text{ Pour } r \in \mathbb{R}^+ \text{ tel que } r < R', \text{ la suite } (na_n r^n) \text{ est bornée par une constante } M \geq 0, \text{ on a pour tout } n \in \mathbb{N}: \\ |a_n r^n| = \frac{|na_n r^n|}{n} \leq \frac{M}{n} \xrightarrow[n \to +\infty]{} 0, \text{ donc la suite } (a_n r^n) \text{ est bornée, donc par définition du rcv, on a } R \geq r. \text{ Ainsi } R \geq \sup([0, R'[), \text{ donc } R \geq R'].$

• Pour $r \in \mathbb{R}^+$ tel que r < R, la suite $(a_n r^n)$ est bornée.

Pour tout $\rho \in]0,R[$, la suite $(a_n\rho^n)$ est bornée par une constante $M\geq 0$, par définition du rcv. on a pour tout $n\in \mathbb{N}$:

 $|na_nr^n| = \left|n\frac{r^n}{\rho^n}\right| |a_n\rho^n| \le M \left|n\frac{r}{\rho}\right|^n = \exp(\ln n + n\ln(r/\rho)) \xrightarrow[n \to +\infty]{} 0, \text{ donc la suite } (na_nr^n) \text{ est bornée, donc par définition du rcv, on a } R' \ge r. \text{ Ainsi } R' \ge \sup([0,R[),\operatorname{donc}\left[R \le R'\right]].$

Corollaire 11.

$$R\left(\sum_{n\geq 0} a_n x^n\right) = R\left(\sum_{n\geq 1} n a_n x^{n-1}\right) R\left(\sum_{n\geq 0} a_n x^n\right) = R\left(\sum_{n\geq 1} a_n \frac{x^{n+1}}{n+1}\right)$$

II.4 Primitivation terme à terme

Théorème 12 (d'intégration terme à terme de la somme d'une série entière).

Soit $\sum_{n\geq 0} a_n t^n$ une série entière (de la var. réelle) de rayon de convergence R, et f sa somme. Alors la série

entière $\sum_{n\geq 0} a_n \frac{t^{n+1}}{n+1}$ a un rayon de convergence R, et sa somme F est la primitive de f valant 0 en 0.

$$\forall x \in]-R, R[, F(x) = \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1} dt$$

De plus, toute primitive P sur]-R,R[de $f: x \longmapsto \sum_{n=0}^{+\infty} a_n x^n$ est de la forme :

$$P: x \longmapsto P(0) + \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}$$

démonstration :

On va appliquer le théorème d'intégration terme à terme pour une série de fonctions de la variable réelle en cas de convergence normale, sur tout segment J=[-a,a] inclus dans]-R,R[, à la série de fonctions $\sum u_n$, avec $\forall n\in\mathbb{N},\ u_n:t\longmapsto a_nt^n.$

i) $\forall n \in \mathbb{N}$, u_n est continue sur J car polynomiale.

ii) La série de fonctions $\sum u_n$ converge normalement donc uniformément sur J = [-r, r] car la série numérique $\sum |a_n| r^n = \sum \sup\{|a_nt^n|; \ t \in [-r, r]\}$ converge, car r < R. normalement.

On en déduit que $S: x \longmapsto \sum_{n=0}^{+\infty} \int_0^x a_n t^n \, \mathrm{d}t = \sum_{n=0}^{+\infty} a_n \frac{t^{n+1}}{n+1}$ est définie et de classe \mathcal{C}^1 sur J = [-a, a], et est la

frimitive de f qui s'annule en 0: $\int_0^x \left(\sum_{n=0}^{+\infty} a_n t^n\right) dt = \sum_{n=0}^{+\infty} \left(\int_0^x a_n t^n\right) dt, \ \forall x \in [-a,a].$

D'après le théorème fondamental, toute autre primitive de f est de la forme $x \longmapsto K + \int_0^x f(t) \mathrm{d}t = K + S(x)$ pour $K \in \mathbb{R}$. \square

II.5 Dérivation terme à terme

lemme : Soit $\sum_{n\geq 0} a_n t^n$ une série entière réelle de rayon de convergence R et de somme S.

Pour tout entier $k \in \mathbb{N}$, la série entière $\sum_{n \geq k} a_n \times n \times (n-1) \cdots \times (n-k+1) \times t^{n-k}$ (ou encore $\sum_{n \geq k} \frac{n!}{(n-k)!} a_n t^{n-k}$) a pour rayon de convergence R.

 $d\acute{e}m$: par récurrence sur $k \geq 1$.

- ullet Pour k=1, on remarque que pour tout $n\geq 1$, $t\mapsto a_nt^n$ est une primitive de $t\mapsto a_nnt^{n-1}$, donc d'après le théorème d'intégration terme à terme les r.c.v. de $\sum_{n\geq 1}a_nt^n$ et $\sum_{n\geq 1}na_nt^{n-1}$ sont égaux.
 - Supposons la propriété vraie pour un $k \ge 1$ fixé.

Pour tout $n \ge k+1$, $t \mapsto \frac{n!}{(n-k)!} a_n t^{n-k}$ est une primitive de $t \mapsto \frac{n!}{(n-k-1)!} a_n t^{n-k-1}$

donc d'après le théorème d'intégration terme à terme les r.c.v. de $\sum_{n\geq k} \frac{n!}{(n-k)!} a_n t^{n-k}$ et de $\sum_{n\geq k+1} \frac{n!}{(n-k-1)!} a_n t^{n-k-1}$ sont égaux. \square .

Théorème 13 (de dérivation terme à terme de la somme d'une série entière).

Soit $\sum_{n\geq 0} a_n z^n$ une série entière de rayon de convergence R, et S sa somme. Alors

1)
$$S:]-R, R[\to \mathbb{C} \text{ est dérivable sur }]-R, R[\text{ et }]$$

$$\forall t \in]-R, R[, S'(t) = \sum_{n=1}^{+\infty} n a_n t^{n-1} = \sum_{m=0}^{+\infty} (m+1) a_{m+1} t^m.$$

2) S est de classe C^{∞} sur]-R,R[et pour tout $k\in\mathbb{N}$, on a :

$$S^{(k)}(t) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n t^{n-k} = \sum_{m=0}^{+\infty} \frac{(m+k)!}{m!} a_{m+k} t^m$$

 $d\acute{e}monstration : Soit J = [-a, a] \subset]-R, R[.$

On applique le théorème de dérivation terme à terme vu pour des fonctions de la variable réelle :

 $t \longmapsto \sum_{n \ge 1} n a_n t^{n-1}$ est l'expression d'une série de fonctions de classe \mathcal{C}^1 qui converge normalement sur J. On peut donc dériver terme à terme.

Une récurrence directe donne la forumle des dérivations successives.

Remarque 4. L'étude des propriétés de la somme au bord de l'intervalle ou du disque de convergence n'est pas un objectif du programme.

II.6 Développement en série entière

Définition 5

Une fonction $f:I\to\mathbb{C}$ définie sur un intervalle I contenant 0 est dite développable en série entière s'il existe un réel r>0 et une suite $(a_n)\in\mathbb{C}^\mathbb{N}$ tels que :

$$]-r,r[\subset I \text{ et }$$

$$\forall t \in]-r, r[, f(t) = \sum_{n=0}^{+\infty} a_n t^n]$$

Proposition 14 (unicité du DSE).

Soit S la somme de la série entière $\sum a_n z^n$ de rayon de convergence R>0. On a : Pour tout $n\in\mathbb{N}$, $a_n=\frac{S^{(n)}(0)}{n!}$.

En particulier, si $f: t \longmapsto \sum_{n=0}^{+\infty} a_n t^n$ est DSE sur un intervalle non vide]-r,r[, avec R<0 et si $f(t)=0, \ \forall t\in]-R,R[$, alors $[\forall n\in \mathbb{N},a_n=0]$

 $d\acute{e}monstration$: On calcule $S^{(n)}$ en t=0, en remarquant que $0^0=1$ et $0^k=0, \ \forall k\in\mathbb{N}^*$. \square .

Définition 6.

Si $f:I\to\mathbb{C}$ est définie et de classe \mathcal{C}^∞ sur un intervalle I contenant 0, sa série de Taylor est la sériede fonctions $\sum_{n\geq 0}[t\longmapsto \frac{f^{(n)}(0)}{n!}t^n].$

Remarque 5. Toute fonction DSE sur]-r,r[y est la somme de sa série de Taylor, au vu de l'expression des coefficients du DSE.

II.7 DSE géométriques et conséquences

Proposition 15.

La fonction $f:t\longmapsto \frac{1}{1-t}$ est développable en série entière sur]-1,1[et

$$\forall t \in]-1,1[, \frac{1}{1-t} = \sum_{n=0}^{+\infty} t^n$$

Ch.14 Séries entières 10/20

 $dcute{e}m$: on reconnaît une série géométrique.

$$\text{Par intégration terme à terme}: -\ln(1-t) = \sum_{p=0}^{+\infty} \frac{t^{p+1}}{p+1}, \, \underline{\text{pour tout } t \in]-1,1[}$$

En échangeant
$$t$$
 et $-t$: $\frac{1}{1+t} = \sum_{p=0}^{+\infty} (-1)^p t^p$, pour tout $t \in]-1,1[$

II.8 Solutions DSE d'équations différentielles

8.a) DSE de l'exponentielle

Proposition 16.

La fonction $f:t\longmapsto \exp(t)=\sum_{n=0}^{+\infty}\frac{t^n}{n!}$ est développable en série entière sur \mathbb{R} .

De plus elle vérifie l'équation différentielle y'=y, avec la condition initiale y(0)=1, donc

$$\forall t \in \mathbb{R}, \ e^t = \exp(t) = \sum_{n=0}^{+\infty} \frac{t^n}{n!}$$

 $d\acute{e}m$: on reconnaît une série exponentielle. On sait que le rayon de convergence est $+\infty$. le théorème de dérivation terme à terme montre que pour tout $t\in\mathbb{R}$, donne

$$f'(t) = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{n=0}^{+\infty} \frac{t^n}{n!} = \sum_{n=0}^{+\infty} \frac{\mathrm{d}}{\mathrm{d}t} \frac{t^n}{n!} = \sum_{n=1}^{+\infty} \frac{t^{n-1}}{(n-1)!} = \sum_{m=0}^{+\infty} \frac{t^m}{m!}.$$

Le calcul est direct pour t = 0, $f(0) = 0^0/0! = 1$.

8.b) DSE via équations différentielles

Pour trouver des solutions d'une équation différentielles y''(t) = a(t)y' + b(t)y + c(t), il peut être utile de procéder par Analyse-Synthèse de la manière suivante :

• On suppose qu'il existe une soltuion $f: t \longmapsto \sum_{n=0}^{+\infty} a_n t^n$ DSE sur]-r,r[pour un r>0 inconnu.

En remplaçant y(t) par $\sum_{n=0}^{+\infty}a_nt^n$, y'(t) par $\sum_{n=1}^{+\infty}na_nt^{n-1}$ et y''(t) par $\sum_{n=2}^{+\infty}n(n-1)a_nt^{n-2}$, dans l'équation différences de la constant y(t) par $\sum_{n=0}^{+\infty}a_nt^n$, y'(t) par $\sum_{n=1}^{+\infty}na_nt^{n-1}$ et y''(t) par $\sum_{n=2}^{+\infty}n(n-1)a_nt^{n-2}$, dans l'équation différences de la constant y(t) par $\sum_{n=0}^{+\infty}a_nt^n$, y'(t) par $\sum_{n=1}^{+\infty}na_nt^{n-1}$ et y''(t) par $\sum_{n=2}^{+\infty}n(n-1)a_nt^{n-2}$, dans l'équation différences de la constant y(t) par $\sum_{n=0}^{+\infty}a_nt^n$, y'(t) par $\sum_{n=1}^{+\infty}na_nt^{n-1}$ et y''(t) par $\sum_{n=2}^{+\infty}n(n-1)a_nt^{n-2}$, dans l'équation différences de la constant y(t) par $\sum_{n=0}^{+\infty}a_nt^n$ de y''(t) par $\sum_{n=0}^{+\infty}n(n-1)a_nt^{n-2}$, dans l'équation différences de la constant y(t) par $\sum_{n=0}^{+\infty}a_nt^n$ de y''(t) par $\sum_{n=0}^{+\infty}a_nt^n$

tielle, puis en faisant des regroupements SELON les puissances croissantes de t, on obtient $\sum_{n=0}^{+\infty} c_n t^n = 0$, et par unicité du DSE, $c_n = 0, \forall n \in \mathbb{N}$, ce qui donne une condition nécessaire sur la suite (a_n) .

(il y a donc unicité du type de solutions DSE sous réserve de convergence sur un ouvert non vide.)

• on vérifie que pour une telle suite (a_n) , le rayon de convergence R vérifie R > 0. Si tel est le cas, cela suffit à dire que l'expression candidate précédemment obtenue est bien DSE sur un intervalle non vide contenant 0.

exemple 3. Rechercher les solutions DSE de

$$y' = \frac{\alpha}{1+t}y$$

Ch.14 Séries entières 11/20

Proposition 17.

Soit $\alpha \in \mathbb{R}$. La fonction $f: t \longmapsto (1+t)^{\alpha}$ est développable en série entière sur]-1,1[et $\forall t \in]-1,1[, \ (1+t)^{\alpha}=1+\sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}t^n$

 $d\acute{e}m$: On remarque que f est solution de $y'=\frac{\alpha}{1+t}y$, avecla condition initiale y(0)=1.

<u>Analyse</u>: supposons f DSE sur un intervalle $]-r,r[:\forall t\in]-r,r[,f(t)=\sum_{n=0}^{+\infty}a_nt^n \text{ et }f'(t)=\sum_{n=1}^{+\infty}na_nt^{n-1}.$

nécessairement, $\forall t \in]-r,r[$, on a :

$$(1+t)f'(t) - \alpha f(t) = \sum_{n=1}^{+\infty} n a_n t^{n-1} + \sum_{n=1}^{+\infty} n a_n t^n - \sum_{n=0}^{+\infty} \alpha a_n t^n = 0, \text{ donc } \sum_{n=0}^{+\infty} \left((n+1) a_{n+1} - (\alpha - n) a_n \right) t^n = 0$$

donc par unicité du DSE, $a_{n+1} = \frac{(\alpha - n)}{n+1}a_n$.

par récurrence, on a nécessairement $a_n=a_0\prod_{k=1}^n\frac{\alpha-k+1}{k}$, et comme $a_0=1$, $a_n=\prod_{k=1}^n\frac{\alpha-k+1}{k},\ \forall n\in\mathbb{N}$

Synthèse :

On détermine que le rayon de convergence de la série entière $\sum_n \prod_{k=1}^n \frac{\alpha-k+1}{k} z^n$ est R=1, d'après la règle de d'Alembert,

car pour $t \neq 0$ et $a_n = \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}t^n$, on a $\left|\frac{a_{n+1}}{a_n}\right| = \frac{|\alpha-n||t|}{n} \xrightarrow[n \to +\infty]{} |t|$, car il y a ACV si |t| < 1, et GDV si |t| > 1.

Donc la fonction $t\longmapsto (1+t)^{\alpha}$ est bien DSE sur]-1,1[, car coïncide avec la solution DSE précédente, par unicité dans le théorème de Cauchy Lipschitz. \square

8.c) DSE de référence

Par intégration, dérivation terme à terme, on obtient à partir $t \longmapsto \frac{1}{1-t}$:

$$\boxed{\frac{1}{1-t} = \sum_{p=0}^{+\infty} t^p}, \; \underbrace{\text{pour tout } t \in]-1,1[} \\ \frac{1}{1+t} = \sum_{p=0}^{+\infty} (-1)^p t^p, \; \underbrace{\text{pour tout } t \in]-1,1[} \\ \frac{1}{1+t^2} = \sum_{p=0}^{+\infty} (-1)^p t^{2p}, \; \underbrace{\text{pour tout } t \in]-1,1[}$$

 $\frac{1}{1-t^2}=\sum_{j=0}^{+\infty}t^{2p}$, pour tout $t\in]-1,1[$

$$\ln(1+t) = \sum_{p=1}^{+\infty} \frac{(-1)^{p-1}t^p}{p}, \text{ pour tout } t \in]-1,1]$$

$$\ln(1-t) = -\sum_{p=1}^{+\infty} \frac{t^p}{p}, \text{ pour tout } t \in [-1,1[$$

$$\arctan(t) = \sum_{p=0}^{+\infty} \frac{(-1)^p t^{2p+1}}{2p+1}, \text{ pour tout } t \in [-1,1]$$

$$\operatorname{Argth}(t) = \sum_{p=0}^{+\infty} \frac{t^{2p+1}}{2p+1}, \text{ pour tout } t \in [-1,1]$$

Par combinaisons linéaires à partir du développement de $t \longmapsto \exp(t)$:

$$e^t = \sum_{k=0}^{+\infty} \frac{t^k}{k!}, \text{ pour tout } t \in \mathbb{R}$$

$$\sin t = \sum_{p=0}^{+\infty} \frac{(-1)^p \ t^{2p+1}}{(2p+1)!}, \text{ pour tout } t \in \mathbb{R}$$

$$\cos t = \sum_{p=0}^{+\infty} \frac{(-1)^p \ t^{2p}}{(2p)!}, \text{ pour tout } t \in \mathbb{R}$$

$$e^{tz} = \sum_{k=0}^{+\infty} \frac{z^k}{k!} t^k, \quad \text{pour tout } t \in \mathbb{R}, \text{ avec } z \in \mathbb{C} \text{ fix\'e}$$

$$\text{Sh } t = \sum_{p=0}^{+\infty} \frac{t^{2p+1}}{(2p+1)!}, \quad \text{pour tout } t \in \mathbb{R}$$

$$\text{Ch } t = \sum_{p=0}^{+\infty} \frac{t^{2p}}{(2p)!}, \quad \text{pour tout } t \in \mathbb{R}$$

Par résolution d'une équation différentielle, on obtient $t\longmapsto (1+t)^{lpha}$, et par primitivation :

$$(1+t)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} t^n$$

$$\frac{1}{\sqrt{1-t^2}} = 1 + \sum_{n=1}^{+\infty} \frac{(2n)!}{(2^n n!)^2} t^{2n}, \ \forall t \in]-1,1[$$

$$\frac{1}{\sqrt{1+t^2}} = 1 + \sum_{n=1}^{+\infty} (-1)^n \frac{(2n)!}{(2^n n!)^2} t^{2n}, \ \forall t \in]-1,1[$$

$$\frac{1}{\sqrt{1-t}} = 1 + \sum_{n=1}^{+\infty} \frac{(2n)!}{(2^n n!)^2} t^n, \text{ pour tout } t \in]-1,1[$$

$$(\operatorname{car} \frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot \dots \cdot (2n)} = \frac{(2n)!}{(2^n n!)^2})$$

$$\operatorname{Arcsin}(t) = t + \sum_{n=1}^{+\infty} \frac{(2n)!}{(2^n n!)^2} \frac{t^{2n+1}}{2n+1}, \ \forall t \in]-1,1[$$

$$\operatorname{Argsh}(t) = t + \sum_{n=1}^{+\infty} \frac{(-1)^n (2n)!}{(2^n n!)^2} \frac{t^{2n+1}}{2n+1}, \ \forall t \in]-1,1[$$

N.B.: seuls les DSE encadrés et les rayons de convergences correspondants sont exigibles du programme PC

Ch.14 Séries entières 13/20

III. Somme, produit de Cauchy

III.1 Rayon de convergence

III.2 Propriétés

2.a) Continuité

Proposition 18 (Continuité de la somme sur le disque ouvert de convergence (admis)).

Soit $\sum a_n z^n$ une série entière de rayon de convergence R>0. Alors la somme $S:z\longmapsto \sum_{n=0}^{+\infty}a_nz^n$ est continue sur D(0,R).

démonstration : admis, preuve HP...

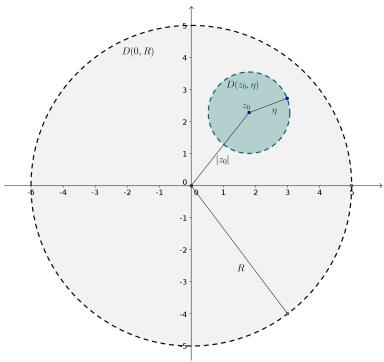
Soient $z_0 \in D(0,R)$, et $\varepsilon > 0$. Soit $\rho \in]|z_0|, R[$, et $n_0 \in \mathbb{N}$ tel que $\forall N \geq n_0, \|S_N - S\|_{\infty,D(0,\rho)} \leq \frac{\varepsilon}{3}$

La fonction S_{n_0} étant continue en z_0 , il existe un $0<\eta<|R-|z_0|$ tel que $\forall z\in D(z_0,\eta), |S_{n_0}(z)-S_{n_0}(z_0)|\leq \frac{\varepsilon}{3}$.

Mais alors pour un tel η et $x \in]x_0 - \eta, x_0 + \eta[\cap I]$, on a :

$$|S(z) - S(z_0)| \leq \underbrace{|S(z) - S_N(z)|}_{<\varepsilon/3} + \underbrace{|S_N(z) - S_N(z_0)|}_{<\varepsilon/3} + \underbrace{|S_N(z_0) - S(z_0)|}_{<\varepsilon/3}$$

 $\forall \varepsilon>0, \ \exists \eta>0; \ \forall z\in D(z_0,\eta), \ |S(z)-S(z_0)|\leq \varepsilon, \ \text{donc} \ S \ \text{est continue en} \ z_0, \ \text{pour tout} \ z\in D(0,R). \ \Box$



Ch.14 Séries entières 14/20

2.b) Sur le rayon de convergence

Proposition 19.

Les séries entières $\sum a_n z^n$ et $\sum na_n z^n$ ont même rayon de convergence.

 $dcute{e}monstration$: Notons R le rcv de $\sum a_n z^n$, et R' celui de $\sum na_n z^n$.

- Pour $r \in \mathbb{R}^+$ tel que r < R', la suite $(na_n r^n)$ est bornée par une constante $M \ge 0$, on a pour tout $n \in \mathbb{N}$: $|a_n r^n| = \frac{|na_n r^n|}{n} \le \frac{M}{n} \xrightarrow[n \to +\infty]{} 0$, donc la suite $(a_n r^n)$ est bornée, donc par définition du rcv, on a $R \ge r$. Ainsi $R \ge \sup([0, R'])$, donc $R \ge R'$.
 - Pour $r \in \mathbb{R}^+$ tel que r < R, la suite $(a_n r^n)$ est bornée.

Pour tout $\rho \in]0,R[$, la suite $(a_n\rho^n)$ est bornée par une constante $M\geq 0$, par définition du rcv. on a pour tout $n\in \mathbb{N}$:

 $|na_nr^n| = \left|n\frac{r^n}{\rho^n}\right| |a_n\rho^n| \le M \left|n\frac{r}{\rho}\right|^n = \exp(\ln n + n\ln(r/\rho)) \xrightarrow[n \to +\infty]{} 0, \text{ donc la suite } (na_nr^n) \text{ est bornée, donc par définition du rcv, on a } R' \ge r. \text{ Ainsi } R' \ge \sup([0,R[),\operatorname{donc}\left[R \le R'\right]]. \square$

Proposition 20.

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergences respectifs R_a et R_b . Alors :

- i) $\overline{\operatorname{si}} \ a_n = O(b_n)$, alors $R_a \geqslant R_b$;
- ii) si $|a_n| \sim |b_n|$, alors $R_a = R_b$.

démonstration :

- i) Il existe K tel que : $\forall n \in \mathbb{N}, |a_n| \leq K|b_n|$. Pour $r \in [0, R_b[$, la suite $(b_n r^n)$ est bornée par M, donc $\forall n \in \mathbb{N}, |a_n r^n| \leq K|b_n r^n| \leq KM$. Ainsi, la suite $(a_n r^n)$ est bornée, donc $R_a \geq r$, donc $R_a \geq \sup[0, R_b[$, d'où $R_a \geq R_b$.
- ii) Si $|a_n| \sim |b_n|$, alors $a_n = O(b_n)$ et $b_n = O(a_n)$, car le quotient a_n/b_n tend vers 1. on applique le point précédent. \square

III.3 Somme

Proposition 21.

Soient $\sum a_n z^n$ et $\sum b_n z^n$ deux séries entières de rayons de convergences respectifs R_a et R_b . Alors la série entière somme est la série $\sum (a_n + b_n) z^n$ et son rayin de convergence R vérifie l'inégalité :

$$R \ge \min(R_a, R_b)$$

En outre, il y a égalité si $R_a \neq R_b$.

Enfin,
$$\forall z \in D(0,R), \ \sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n$$

Ch.14 Séries entières 15/20

 $d\acute{e}monstration$: Pour $r < \min(R_a, R_b)$, les suites $(a_n r^n)$ et $(b_n r^n)$ sont bornées, donc $((a_n + b_n)r^n)$ est bornée, donc $R \ge \sup([0, \min(R_a, R_b)]) = \min(R_a, R_b)$.

Si $R_a < R_b$, pour $r \in]R_a, R_b[$, la suite $(a_n r^n)$ est bornée, mais la suite $(b_n r^n)$ n'est pas bornée, donc la suite $((a_n + b_n)r^n)$ n'est pas bornée, donc $R \le r$, donc $R \le \sup([0, \min(R_a, R_b)]) = \min(R_a, R_b)$.

La formule est celle de la somme de séries numériques convergentes. \Box

III.4 Produit de Cauchy

Définition 7.

Etant données deux séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$, leur **produit** de Cauchy est la série entière

$$\sum c_n z^n \text{ de terme général } c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{p,q \in \mathbb{N}; \ p+q=n} a_p b_q$$

Proposition 22 (Rayon de convergence du produit de Cauchy de deux séries entières).

Etant données deux séries entières $\sum_{n\geq 0} a_n z^n$ et $\sum_{n\geq 0} b_n z^n$ de rayons de convergence respectifs R_a et R_b , le

rayon de convergence R_c de leur **produit de Cauchy** $\sum c_n z^n$ vérifie $R_c \ge \min(R_a, R_b)$. En outre, pour tout $z \in \mathbb{C}$ tel que $|z| < R_c$, on a :

$$\sum_{k=0}^{+\infty} c_k z^k = \sum_{k=0}^{+\infty} \left(\sum_{p=0}^{k} a_p b_{k-p} z^k \right) = \left(\sum_{p=0}^{+\infty} a_p z^p \right) \left(\sum_{q=0}^{+\infty} b_q z^q \right)$$

 $d\acute{e}monstration:$ pour tout $z\in\mathbb{C}$ tel que $|z|<\min(R_a,R_b)$, les séries numériques $\sum_{p=0}^{+\infty}a_pz^p$ et $\sum_qb_qz^q$ sont ACV.

Leur produit de Cauchy est donc lui aussi ACV, et son terme général d'indice k est $\sum_{p=0}^k a_p z^p b_{k-p} z^{k-p} = \sum_{p=0}^k a_p b_{k-p} z^k$.

exemple 4. $\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ et $\exp(2z) = \sum_{m=0}^{+\infty} \frac{(2z)^m}{m!}$ sont les sommes de deux séries entières de rayon de convergence infini. Leur produit de Cauchy a la même reven de convergence $P_n = +\infty$ et pour somme :

convergence infini. Leur produit de Cauchy a le même rayon de convergence
$$R_c = +\infty$$
, et pour somme :
$$\sum_{n=0}^{+\infty} \frac{z^n}{n!} \times \sum_{m=0}^{+\infty} \frac{(2z)^m}{m!} = \sum_{s=0}^{+\infty} \sum_{m=0}^{s} \frac{z^{s-m}}{(s-m)!} \frac{(2z)^m}{m!} = \sum_{s=0}^{+\infty} \frac{1}{s!} \sum_{m=0}^{s} \binom{s}{m} z^{s-m} (2z)^m = \sum_{\text{binôme Newton}} \sum_{s=0}^{+\infty} \frac{(3z)^s}{s!} = \exp(3z)$$
On a $\exp(x+y) = \exp(x) \times \exp(y)$

Remarque 6. même si $R_a \neq R_b$, il n'y a pas de résultat général pour le calcul de R_c .

 $\sum 1z^n \text{ a pour rcv } R_a = 1, \sum b_n z^n, \text{ avec } b_0 = 1, b_1 = -1, b_n = 0, \forall n \geq 2 \text{ a pour rcv } R_b = +\infty \text{ et leur produit de Cauchy } \sum c_n z^n \text{ a pour rcv } r_c = +\infty \text{ avec } c_0 = a_0 b_0 = 1, \text{ et } c_m = 0, \forall m \geq 1.$

NOUVEAU Programme PC 2022 :

4.a) C - Séries entières

Les objectifs de cette section sont les suivants :

- étudier la convergence d'une série entière et mettre en évidence la notion de rayon de convergence;
- étudier les propriétés de sa somme en se limitant à la continuité dans le cas d'une variable complexe;
- établir les développements en série entière des fonctions usuelles.

Les séries entières trouveront un cadre d'application dans la notion de fonction génératrice en probabilités.

Contenus

CAPACITÉS & COMMENTAIRES

a) Rayon de convergence

Série entière de la variable réelle, de la variable complexe. Lemme d'Abel :

si la suite $(a_n z_0^n)$ est bornée alors, pour tout nombre complexe z tel que $|z| < |z_0|$, la série $\sum a_n z^n$ est absolument convergente.

Rayon de convergence R défini comme borne supérieure dans $[0,+\infty]$ de l'ensemble des réels positifs r tels que la suite $(a_n r^n)$ est bornée.

Intervalle ouvert de convergence.

Disque ouvert de convergence.

Avec R_a (resp. R_b) le rayon de convergence de $\sum a_n z^n$, (resp. $\sum b_n z^n$):

— si $a_n = O(b_n)$, alors $R_a \geqslant R_b$;

— si $a_n \sim b_n$, alors $R_a = R_b$.

Application de la règle de d'Alembert pour les séries numériques au calcul du rayon.

Rayon de convergence de la somme et du produit de Cauchy de deux séries entières.

La série $\sum a_n z^n$ converge absolument si |z| < R, et elle diverge grossièrement si |z| > R.

Pour
$$\alpha \in \mathbb{R}$$
, $R\left(\sum n^{\alpha}x^{n}\right)=1$.

Le résultat s'applique en particulier lorsque $a_n=o(b_n)$.

La limite du rapport $\frac{|a_{n+1}|}{|a_n|}$ peut être directement utilisée

b) Régularité de la somme d'une série entière de la variable réelle

Convergence normale d'une série entière d'une variable réelle sur tout segment inclus dans l'intervalle ouvert de convergence.

Continuité de la somme sur l'intervalle ouvert de convergence.

Primitivation d'une série entière d'une variable réelle sur l'intervalle ouvert de convergence.

Caractère \mathcal{C}^{∞} de la somme d'une série entière d'une variable réelle sur l'intervalle ouvert de convergence et obtention des dérivées par dérivation terme à terme.

L'étude des propriétés de la somme au bord de l'intervalle ouvert de convergence n'est pas un objectif du programme.

Relation
$$R\left(\sum a_n x^n\right) = R\left(\sum n a_n x^n\right)$$
.

Contenus

CAPACITÉS & COMMENTAIRES

Expression des coefficients d'une série entière de rayon de convergence strictement positif au moyen des dérivées successives en 0 de sa somme.

c) Développement en série entière au voisinage de 0 d'une fonction d'une variable réelle

Fonction développable en série entière sur un intervalle]-r,r[.

Série de Taylor d'une fonction de classe \mathcal{C}^{∞} .

Unicité du développement en série entière.

Développements des fonctions usuelles.

Formule de Taylor avec reste intégral.

Les étudiants doivent connaître les développements en série entière des fonctions : exponentielle, cosinus, sinus, cosinus et sinus hyperboliques, $\arctan, x \mapsto \ln(1+x)$ et $x \mapsto (1+x)^{\alpha}$.

Les étudiants doivent savoir développer une fonction en série entière à l'aide d'une équation différentielle linéaire. L'unicité de la solution d'un problème de Cauchy adapté sera explicitement admise.

d) Séries géométrique et exponentielle d'une variable complexe

Continuité de la somme d'une série entière de la variable complexe sur le disque ouvert de convergence.

Développement de $\frac{1}{1-z}$ sur le disque unité ouvert.

Développement de $\exp(z)$ sur \mathbb{C} .

La démonstration est hors programme.

Programme PC:

Séries entières

Les objectifs de ce chapitre sont les suivants :

- étudier la convergence d'une série entière de variable complexe et mettre en évidence la notion de rayon de convergence;
- étudier les propriétés de sa somme en se limitant à la continuité dans le cas d'une variable complexe;
- établir les développements en série entière des fonctions usuelles.

La théorie des séries entières sera appliquée au cas des séries génératrices dans le chapitre dédié aux variables aléatoires discrètes et à la recherche de solutions d'équations différentielles linéaires.

Contenus

CAPACITÉS & COMMENTAIRES

a) Rayon de convergence

Lemme d'Abel : si la suite $(a_n z_0^n)$ est bornée alors, pour tout nombre complexe z tel que $|z| < |z_0|$, la série $\sum a_n z^n$ est absolument convergente.

Rayon de convergence R défini comme borne supérieure dans $\overline{\mathbb{R}}$ de l'ensemble des réels positifs ρ tels que la suite $(a_n\rho^n)$ est bornée.

Disque ouvert de convergence, intervalle ouvert de convergence.

Si R_a est le rayon de convergence de $\sum a_n z^n$ et R_b celui

de
$$\sum b_n z^n$$
, alors :
 $\operatorname{si}\ a_n = O(b_n)$, alors $R_a \geqslant R_b$;
 $\operatorname{si}\ |a_n| \sim |b_n|$, alors $R_a = R_b$.

Les séries entières $\sum a_n z^n$ et $\sum na_n z^n$ ont même rayon de convergence.

Utilisation de la règle de d'Alembert.

Rayon de convergence de la somme et du produit de Cauchy de deux séries entières.

Pour |z| < R, la série $\sum a_n z^n$ converge absolument.

b) Régularité de la somme

Convergence normale d'une série entière d'une variable réelle sur tout segment inclus dans l'intervalle ouvert de convergence.

Continuité de la somme sur l'intervalle ouvert de convergence.

On admet la continuité de la somme d'une série entière d'une variable complexe sur le disque ouvert de convergence.

L'étude des propriétés de la somme au bord de l'intervalle ou du disque de convergence n'est pas un objectif du programme.

Ch.14 Séries entières 19/20

Contenus

Capacités & Commentaires

Primitivation d'une série entière d'une variable réelle sur l'intervalle ouvert de convergence.

Caractère \mathcal{C}^{∞} de la somme d'une série entière d'une variable réelle sur l'intervalle ouvert de convergence et obtention des dérivées par dérivation terme à terme. Expression des coefficients d'une série entière au moyen des dérivées successives en 0 de sa somme.

c) Développement en série entière au voisinage de 0 d'une fonction d'une variable réelle

Fonction développable en série entière. Série de Taylor d'une fonction de classe \mathcal{C}^{∞} . Unicité du développement en série entière. Développements des fonctions usuelles.

Les étudiants doivent connaître les développements en série entière des fonctions exponentielle, cosinus, sinus, cosinus et sinus hyperboliques, $x \longmapsto \operatorname{Arctan} x, \ x \longmapsto \ln(1+x)$ et $x \longmapsto (1+x)^{\alpha}$.

Les étudiants doivent savoir utiliser une équation différentielle linéaire pour développer une fonction en série entière.

d) Séries géométrique et exponentielle d'une variable complexe

Développement de $\dfrac{1}{1-z}$ sur le disque unité ouvert. Développement de $\exp(z)$ sur $\mathbb C.$

Exemples d'utilisation de développements en série entière pour la recherche de solutions. (cf ch. Equation différentielles

Ch.14 Séries entières 20/20