Programme de colles 17 (1/2 - 5/2)

Cours

Pour chaque définition, il est important de bien comprendre le rôle des quantificateurs utilisés. L'étudiant doit être en mesure de proposer des exemples (éventuellement à l'aide de figures) pour illustrer les définitions. La démonstration marquée de $[\star]$ ne sera demandée qu'aux élèves à l'aise.

— Matrices : Matrices inversibles, $\mathcal{G}l_n(\mathbb{K})$. Le déterminant d'un matrice carrée de taille 2 permet de décider son inversibilité; expression de l'inverse lorsqu'elle existe. Pour le cas général, le calcul du rang permet de décider l'inversibilité d'une matrice; autrement dit : $A \in \mathcal{M}_n(\mathbb{K})$ est inversible si, et seulement si, A est équivalente en lignes à I_n . Algorithme d'inversion on

est inversible si, et seumement si, A and B est inversible si, et seumement si, A and B ou bien $A|I_n$; si A est inversible, la partie B est inversible, la partie

augmentée donne A^{-1}

- Analyse asymptotique : relations de domination, de négligeabilité et d'équivalence pour les suites et les fonctions; notations de Landau. Comparaisons usuelles, en particulier trouver un équivalent simple d'un polynôme en $+\infty$ et en 0.

Développements limités: définition, obtention à l'aide de la formule de Taylor Young. Développements limités de référence, obtention de nouveaux développements limités par opérations (le quotient à l'aide de $\frac{1}{1-u}$).

Cette semaine, chaque élève doit restituer un DL de référence (l'ordre 3 suffit).

- Démonstrations exigibles :
 - $[\star]$ Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si A est inversible à droite alors A est inversible.

 - $\ln n = o(n)$ $[\star]$ Pour tout réel a, $a^n = o(n!)$
 - Lorsqu'il existe, le développement limité est unique.

Exercices

- a) Exercices de dénombrement.
- b) Calculer une limite avec des équivalents.
- c) Matrices : calculer dans $\mathcal{M}_{n,p}(\mathbb{K})$, décider l'inversibilité, calculer l'inverse. En particulier, les élèves doivent être à l'aise dans $\mathcal{M}_2(\mathbb{K})$.
- d) Utiliser la formule de Taylor Young.
- e) Calculer un DL par opérations en se ramenant aux DL de référence.
- f) Questions du DS5 (disponible sur le cahier de texte samedi midi).