Chapitre 2: calculer dans $\mathbb C$

Notations : dans ce chapitre, le plan est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

1 Généralités sur les complexes

1.1 Forme algébrique

Définition

- On note i un nombre, non réel, qui vérifie $i^2 = -1$.
- On appelle **nombres complexes** les nombres de la forme z = a + ib avec a et b des réels. On dit alors que a est la **partie réelle** de z et que b est sa **partie imaginaire**; on les note respectivement Re(z) et Im(z).
- L'ensemble des nombres complexes est noté \mathbb{C} .
- Pour un complexe z, l'écriture z = Re(z) + i Im(z) s'appelle la forme algébrique de z, cette écriture de z est unique.

Exemples:

Remarques:

a) Tout réel x est un nombre complexe :

Une différence importante avec \mathbb{R} : il n'y a pas de relation d'ordre dans \mathbb{C} .

- b) Attention: une partie imaginaire est un nombre réel.
- c) L'unicité de la forme algébrique signifie que, si z et z' sont deux complexes on a :

$$(z = z') \iff (\operatorname{Re}(z) = \operatorname{Re}(z') \text{ et } \operatorname{Im}(z) = \operatorname{Im}(z'))$$

Méthode (Pour montrer que deux complexes z et z' sont égaux)

Remarque : il y a une correspondance bijective entre \mathbb{C} et \mathbb{R}^2 . On connait d'autres correspondances bijectives entre \mathbb{R}^2 et des ensembles : lesquelles?

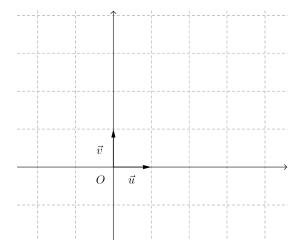
Définition

Soit z un complexe.

- i. On dit que le point M du plan de coordonnées (Re(z), Im(z)) est l'**image** de z dans le plan; réciproquement, on dit que z est l'**affixe** du point M et on notera M(z).
- ii. De façon analogue, on dit que z est l'**affixe** du vecteur $\begin{pmatrix} \operatorname{Re}(z) \\ \operatorname{Im}(z) \end{pmatrix}$.

Exemples:

- Représenter les points A(2+3i) et B(3-i).
- Que des dire des complexes dont l'image est sur l'axe des ordonnées?



— Où sont situées les images des complexes réels?

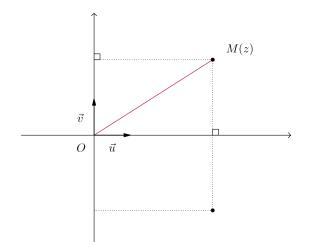
— Représenter $\Gamma = \{M(z)/\text{Re}(z) = \text{Im}(z)\}.$

Remarque : le plan nous permet donc de représenter \mathbb{C} . On parle de plan complexe.

Définition

Soit z = a + ib un complexe sous forme algébrique, M(z) son image dans le plan complexe.

- i. On appelle **conjugué** de z le nombre complexe noté \overline{z} défini par :
- ii. Graphiquement, l'image de \overline{z} dans le plan complexe est



iii. On appelle **module** de z, et on note |z|, la distance OM, c'est-à-dire la norme de \overrightarrow{OM} .

On a:

iv. Si $z \neq 0$, un **argument** de z désigne une mesure en radians de l'angle orienté $(\vec{u}, \overrightarrow{OM})$.

Remarque: pour un complexe non nul z, l'argument de z est défini à un multiple de 2π près (il en existe une infinité). Parmi les arguments de z, on appelle **argument principal** celui qui est dans $]-\pi;\pi]$, on le note $\operatorname{Arg}(z)$.

Proposition

Soit z un complexe.

- a) $|\overline{z}| = |z|$.
- b) Si $z \notin \mathbb{R}^-$, $Arg(\overline{z}) = -Arg(z)$.

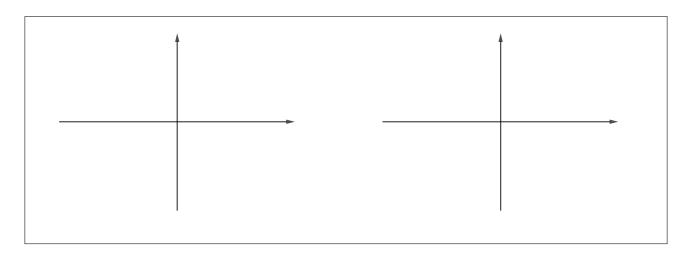
Démonstration

Ces deux résultats sont une conséquence directe des définitions géométriques de la conjugaison, du module et de l'agument. Par exemple, pour a) :

Remarque : pour b) on a du préciser $z \notin \mathbb{R}^-$ car

Exercice

Dans le plan complexe, représenter $\Lambda = \{M(z)/1 < |z| \le 2\}$ et $\Pi = \{M(z)/\operatorname{Arg}(z) \in [0; \frac{\pi}{6}]\}$.



1.2 Opérations dans $\mathbb C$

Proposition

L'addition et la multiplication dans \mathbb{R} se prolongent naturellement à \mathbb{C} . Ainsi, pour tous complexes z et z' de formes algébriques $z=a+\mathrm{i} b$ et $z'=c+\mathrm{i} d$ on a :

- \bullet z + z' =
- zz' =

Exemples:

- 1. $(3+2i)^2 =$
- 2. Résoudre dans \mathbb{C} l'équation (3+i)z 2i = 3z 1.

Proposition

Soit $A(z_A)$ et $B(z_B)$ deux points du plan complexe. La distance AB vaut $|z_B - z_A|$.

Démonstration

soit $A(x_A; y_A)$ et $B(x_B; y_B)$ deux points du plan.

D'une part, la distance AB vaut :

D'autre part, les coordonnées cartésiennes du vecteur \overrightarrow{AB} sont :

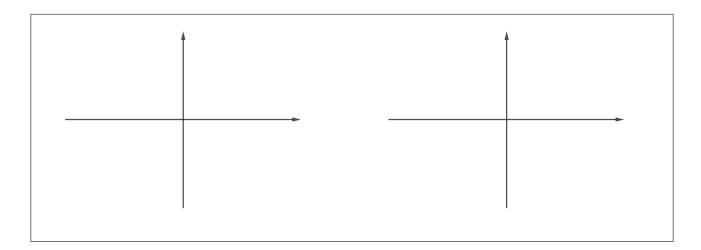
On en déduit que l'affixe complexe de ce vecteur est :

Soit, en faisant apparaı̂tre les affixes de A et B :

Finalement,

Exercice

Dans le plan complexe, représenter $\Sigma = \{M(z)/|z-1-\mathrm{i}|=1\}$ et $\Theta = \{M(z)/|z+2\mathrm{i}+1|<1\}$.



1.3 Propriétés du module et de l'argument

Proposition

Soit z un complexe. On a $z\overline{z} = |z|^2$.

Démonstration

Soit $z \in \mathbb{C}$.

Remarque : en particulier, pour tout complexe z, le nombre $z\overline{z}$ est un réel (positif). Cela permet de trouver la forme algébrique de l'inverse d'un complexe non nul, ou d'une fraction.

Méthode (Pour trouver la forme algébrique d'une fraction)

Exemple : Montrer que $\frac{1+i}{1-i}$ est imaginaire pur.

Proposition (Propriétés de la conjugaison)

Soit z et z' deux complexes. On a :

a)
$$\overline{\overline{z}} =$$
 ; $z + \overline{z} =$; $z - \overline{z} =$

b) La conjugaison est compatible avec les opérations :

$$\overline{z+z'}=$$
 ; $\overline{z\times z'}=$ et, si $z'\neq 0$, $\overline{\left(\frac{z}{z'}\right)}=$

4

Proposition (Le module est compatible avec la multiplication et la division)

Soit z et z' deux complexes. On a :

a)
$$|zz'| =$$

b) Si
$$z' \neq 0, |\frac{z}{z'}| =$$

c)
$$\forall n \in \mathbb{N}, |z^n| =$$

Démonstration

On se limite au produit.

Remarque: Le module n'est pas compatible avec l'addition et la soustraction:

Proposition (Inégalité triangulaire)

Soit z et z' deux complexes. On a : $|z + z'| \le |z| + |z'|$.

Démonstration

Soit z et z^\prime deux complexes. On va raisonner par équivalences :

 $(\star): |z+z'| \le |z| + |z'| \iff |z+z'|^2 \le (|z|+|z'|)^2$ (possible car

$$\iff (z+z')\overline{(z+z')} \le |z|^2 + |z'|^2 + 2|z||z'|$$

$$\iff z\overline{z'} + \overline{z}z' \le 2|z||z'|$$

 $\mathrm{Or},\ z\overline{z'}+\overline{z}z'=2\mathrm{Re}(z\overline{z'})\ \mathrm{d'où}:(\star)\Longleftrightarrow\mathrm{Re}(z\overline{z'})\leq|z||z'|.$

On a $|z||z'|=|z||\overline{z'}|=|z\overline{z'}|$; la dernière inégalité devient $\text{Re}(z\overline{z'})\leq |z\overline{z'}|$ qui est toujours vraie.

Par équivalences, l'inégalité triangulaire est donc démontrée.

Remarque : le cas d'égalité se produit lorsque z et z' ont le même argument principal. Dans la démonstration, cela revient à avoir $\text{Re}(z\overline{z'}) = |z\overline{z'}|$ qui se produit si, et seulement si, $z\overline{z'} \in \mathbb{R}^+$. Nous verrons dans un prochain chapitre sur les complexes que l'argument d'un produit est la somme des arguments et on pourra conclure.

2 Nombres complexes de module 1

2.1 Ensemble \mathbb{U}

Définition

On appelle $\mathbb U$ l'ensemble des nombres complexes dont le module est 1.

$$\mathbb{U}=\{z\in\mathbb{C}/|z|=1\}$$

5

Exemples:

1. $|1+2i| = \sqrt{5} \neq 1$ donc $1+2i \notin \mathbb{U}$.

 $2. \hspace{1cm} \in \mathbb{U}, \hspace{1cm} \in \mathbb{U}, \hspace{1cm} \in \mathbb{U}.$

3. $j = \frac{-1+i\sqrt{3}}{2} \in \mathbb{U}$. En effet,

Géométriquement, U correspond

qui est l'ensemble des points du plan dont les coordonnées sont de la forme

Proposition

Soit $z \in \mathbb{U}$, M(z) son image dans le plan complexe.

- Il existe $\theta \in \mathbb{R}$ tel que $z = \cos(\theta) + i\sin(\theta)$.
- θ est un argument de z, c'est une mesure de $(\overrightarrow{u}, \overrightarrow{OM})$.
- Si l'on rajoute la condition $\theta \in]-\pi;\pi]$ alors θ devient unique, c'est l'argument principal de z, on le note Arg(z).

Exemples:

- $1 = 1 + 0i = \cos(0) + \sin(0)i$ et donc Arg(1) =
- Arg(i) =; Arg(-1) =; Arg(-i) =
- donc Arg(j) =• *j* =

Proposition

U est stable par produit :

Démonstration

Soit

Exercice Montrer que
$$f: \left\{ \begin{array}{ll} \mathbb{R} & \to & \mathbb{U} \\ \theta & \mapsto & \cos(\theta) + \mathrm{i}\sin(\theta) \end{array} \right. \text{ vérifie}: \forall (\theta,\phi) \in \mathbb{R}^2, \ f(\theta) \times f(\phi) = f(\theta+\phi).$$

Réponse

Cette **propriété fonctionnelle** est celle de

Définition

Soit $\theta \in \mathbb{R}$. On appelle **exponentielle** de $i\theta$ le nombre $e^{i\theta} =$

Les propriétés calculatoires de exp découlant de sa propriété fonctionnelle, l'exponentielle complexe possède les mêmes :

Proposition

Soit $(\theta, \phi) \in \mathbb{R}^2$ et soit $n \in \mathbb{Z}$. On a :

a)
$$e^{i\theta} \times e^{i\phi} =$$
 b) $\frac{1}{e^{i\theta}} =$ c) $(e^{i\theta})^n =$ d) $\frac{e^{i\theta}}{e^{i\phi}} =$

b)
$$\frac{1}{e^{i\theta}} =$$

c)
$$(e^{i\theta})^n =$$

d)
$$\frac{e^{i\theta}}{e^{i\phi}} =$$

Remarque: la preuve est laissée en exercice. (C'est sans difficulté mais formateur pour la rédaction).

6

2.2 Formules d'Euler et de Moivre

Proposition (Formules d'Euler)

Soit $\theta \in \mathbb{R}$. On a:

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Démonstration

Par exemple, pour

Proposition (Formule de Moivre)

Soit $\theta \in \mathbb{R}$ et $n \in \mathbb{N}$. On a :

$$\left(e^{i\theta}\right)^n = e^{in\theta} \iff \left[\left(\cos(\theta) + i\sin(\theta)\right)^n = \cos(n\theta) + i\sin(n\theta)\right]$$

2.3 Application : linéarisation d'expressions trigonométriques

Il s'agit de tranformer une expression de la forme $\cos^n(x)$ (ou $\sin^n x$) en une somme de $\cos(kx)$ et de $\sin(kx)$.

Méthode (Linéariser une expression trigonométrique)

- 1. on utilise la formule d'Euler pour exprimer l'expression trigonométrique à l'aide de l'exponentielle complexe;
- 2. on développe la puissance (grâce à la formule du binôme de Newton);
- 3. on utilise les propriétés de l'exponentielle puis on regroupe les termes « qui se ressemblent » :
- 4. on utilise Euler faire apparaître des expressions trigonométriques à la place des exponentielles complexes.

Exemple : Pour $x \in \mathbb{R}$, linéarisons $\cos^3 x$.

Finalement,
$$\forall x \in \mathbb{R}$$
, $\cos(x)^3 = \frac{1}{4}\cos(3x) + \frac{3}{4}\cos(x)$

Remarque: on manipule une expression réelle, il ne doit donc pas rester de i à la fin.

On peut faire le "contraire". Par exemple, exprimons $\sin(3x)$ en fonction de puissances de $\cos x$ et $\sin x : \forall x \in \mathbb{R}, \ \sin(3x) = \operatorname{Im}(e^{3ix}) = \operatorname{Im}\left((e^{ix})^3\right) = \operatorname{Im}\left((\cos x + i\sin x)^3\right)$.

Après calculs, il vient :
$$\forall x \in \mathbb{R}, \sin(3x) = 3\cos^2(x)\sin(x) - \sin^3(x)$$

3 Forme exponentielle d'un nombre complexe non nul

Théorème

Soit z un complexe non nul.

z peut être écrit <u>de façon unique</u> sous la forme $z=r\mathrm{e}^{\mathrm{i}\theta}$ avec r>0 et $\theta\in]-\pi;\pi]$. Cette expression est la **forme exponentielle** du complexe z.

On a alors : r = |z| et $\theta = \text{Arg}(z)$.

Démonstration

Soit $z \in \mathbb{C}^*$.

Le complexe $\frac{z}{|z|}$ a pour module 1. Donc, il existe $\theta \in \mathbb{R}$ tel que $\frac{z}{|z|} = e^{i\theta} \iff z = |z|e^{i\theta}$.

L'unicité tient à l'unicité du module ainsi qu'à l'unicité de l'argument principal.

Remarque: en pratique, si r, ρ, θ et ϕ sont des réels (avec r et ρ strictement positifs) alors

$$re^{i\theta} = \rho e^{i\phi} \iff \begin{cases} \rho = r \\ \theta = \phi + k2\pi \text{ (avec un certain } k \in \mathbb{Z}) \end{cases}$$

Méthode (Prouver l'égalité de deux complexes non nuls avec la forme exponentielle) On vérifie qu'ils ont même module et que leurs arguments correspondent au même angle, c'est-à-dire qu'ils sont congrus modulo 2π .

Cela signifie que deux complexes z et z' sont égaux si, et seulement si, leurs modules et leurs arguments principaux sont égaux.

Méthode (Passer de la forme algébrique à la forme exponentielle)

- si l'argument principal est évident, il ne reste qu'à calculer le module.
- Sinon,
 - 1. on calcule le module de z;
 - 2. on factorise la forme algébrique de z par |z|;
 - 3. on identifie $\cos(\theta)$ et $\sin(\theta)$ (avec $\theta = \text{Arg}(z)$);
 - 4. si θ est un angle remarquable on donne sa valeur exacte.
 - 5. La forme exponentielle de z est $|z|e^{i\theta}$.

Exemples:

- 1. Donner la forme exponentielle de 1 + i.
- 2. Donner la forme exponentielle de $z = -\sqrt{3}i + 1$.

3. Donner la forme exponentielle de z = -3 - 7i.

Remarques:

- 1. L'écriture intermédiaire $z = |z|(\cos(\theta) + i\sin(\theta))$ est la forme trigonométrique de z.
- $2. \ \,$ Il est facile de passer de la forme exponentielle à la forme algébrique.

Par exemple, $6e^{i\frac{7\pi}{6}} =$

Proposition (Propriétés des arguments)

Soit z et z' deux complexes non nuls. On a :

a) $Arg\left(\frac{1}{z}\right) =$

b) Arg(zz') =

c) Arg $\left(\frac{z}{z'}\right)$ =

Démonstration

Pour chaque point, il s'agit d'exploiter l'unicité de la forme exponentielle d'un complexe. Par exemple pour a) :

Remarque : il y a une (petite) erreur dans l'énoncé de la propriété. En effet,

Méthode (Factoriser $cos(a) \pm cos(b)$ ou $sin(a) \pm sin(b)$ avec l'angle moitié)

- 1. on écrit la quantité étudiée comme la partie réelle (ou imaginaire) d'une somme d'exponentielles complexes;
- 2. on fait intervenir l'angle moitié $\frac{a+b}{2}$ et on écrit $a=\frac{a+b}{2}+\frac{a-b}{2}$ et $b=\frac{a+b}{2}-\frac{a-b}{2}$;
- 3. on factorise par $e^{i\frac{a+b}{2}}$;
- 4. on utilise la formule d'Euler pour la parenthèse;
- 5. on conclut.

Exemple: soit $(a,b) \in \mathbb{R}^2$. Transformons $\cos(a) + \cos(b)$ avec la technique de l'angle moitié.