Chapitre 14 : analyse asymptotique

Introduction

Nous avons donné un sens précis aux limites, pour les suites et pour les fonctions. Ainsi, dire qu’une suite u
tend vers +o0 signifie :

Que dire de deux suites (ou deux fonctions) qui ont la méme limite ? Tendent-elles vers cette limite commune
« de fagon analogue » 7 Ou bien peut-on comparer leur comportement asymptotique 7

La réponse est oui, c’est ce que nous allons développer dans un premier temps.

Dans un second temps, nous allons comparer les comportements asymptotiques des suites et fonctions & ceux
d’une famille de référence : les polynémes. Cela sera fait grace & un nouvel outil : le développement limité.

exp, In, x — 22, x> /T, T — %x et x — § +sin(x) : toutes ces fonctions ont la méme limite en +oo.

1 Relations de comparaisons asymptotiques : cas des suites

Remarque : pour une suite de réels, le seul comportement asymptotique a étudier est pour n — +o00; de ce
point de vue, les suites sont plus simples que les fonctions.
Comparer le comportement asymptotique de deux suites c’est les comparer pour « n — 400 » et donc pas sur

leurs premiers termes.

1.1 Domination, négligeabilité

Soient u et v deux suites, avec v qui ne s’annule jamais a-partir d’un certain rang.

u
i. On dit que u est dominée par v lorsque — est bornée (& partir d’un certain rang), autrement dit :
v

On note alors u,, = O(v,) (et on dit "grand O").

u
ii. On dit que u est négligeable devant v lorsque lirf — = 0. On note alors u,, = o(v,) (on dit "petit
n—+o00 Uy,

0"); on croise encore parfois u,, < v, mais cette notation est désuéte.



Exemples :

a) Prouver que 3n* — n? +2n + 1 = O(n?).

b) Prouver que n? —4n = o(n® — 1).

Exercice
Que dire de suites u et v qui vérifient u = O(1) et v =o0(1)?

Réponse
— La suite u

— La suite v

Les deux propositions qui suivent sont des conséquences directes des définitions et des opérations sur les limites.

Proposition (Lien entre négligeabilité et domination)
Soit (Un)nen, (Un)nen €t (wn)nen des suites.

i. Siu, = o(vy,) alors u, = O(vy,).

ii. Siwu, = o(vy,) et v, = o(wy) alors u, = o(wy,).
ili. Siuy, = o(vy) et v, = O(wy,) alors u, = o(wy,).
iv. Si up = O(vy) et vy, = o(wy,) alors u, = o(wy,).

v. Siup = O(vy,) et v, = O(wy,) alors u, = O(wy,).

Exemple : sin(n) = o(n) et n = o(n!) donc sin(n) = o(n!)

Proposition (Négligeabilité et domination : comportement lorsqu’on fait des opérations)
Soit (Un)neN, (Vn)neNs (Wn)nen €t (Tn)nen des suites, A € R.

i. Siu, = o(wy) et v, = o(w,) alors Au, + pv, = o(w,).

ii. Siwu, =o(wy) et v, = o(xy,) alors u,v, = o(w,xy).

iii. On peut remplacer tous les o par des O dans les propositions précédentes.

Remarque : la formulation a été privilégiée avec la négligeabilité qui est plus utilisée que la domination.

Proposition (Comparaisons usuelles)
i. V(o B) € (RT)2, In’(n) = o(n®)

ii. Ya € RT™ Va > 1, n® = o(a")

iii. Va € R, a" = o(n!).




Démonstration

— Commengons par prouver que In(n) = o(n) :
On a, Yn > 1, 1n(n):/ S/ 7 x*[Q\f} 2(v/n—1) < 2y/n.
) In(n ) In(n )
Il suit que Yn >1, 0 < < — et donc, d’aprés le théoréme des gendarmes, ——~ — 0 soit
n f n n——+oo

In(n) = o(n).
Montrons & présent que Y(a, 8) € (RT*)2, In’(n) = o(n

Soit (a,ﬁ) e (R+*)2, Vn > 1, IIIB(n) _ <1H(Z}))IB _ (

Q\Q \_%
—
w|R

ne nB

B a\ B
n(n) ~(B\ (In(n)?
n% o (0% n% '
5
Or, en vertu du point précédent et par composition,

On a donc bien prouvé i. In®(n) = o(n®).

Prouvons ii. Soit &« € RT* et a > 1.

o aln(n) 1
On a, pour n > 1, nTl = elﬁ = exp (aln(n) — nln(a)) = exp (n(an(n) - ln(a))>.
a en n(a n
On a a > 1 donc In(a) > 0 puis n(a M In(a)) — —oo.

n—-+oo
En composant avec exp on obtient blen que n® = o(a").

Prouvons iii. Va € R, a™ = o(n!).
Pour a = 0, le résultat est évident. Ensuite, on observe que, Va € R*, "™ = O(|a|™) et donc il suffit de
montrer iii. pour a > 0.

n a™o a

no n—no
. a a _a a
Soit ng = |a]. On a, pour n > ng : — = — X X oo X — < — X )
n! ng!  ng+1 n — ng! no + 1

n—ng facteurs

n—no
a : n _ |
< 1 donc (no+1) Wy 0 et on a bien a” = o(n!).

Or,0<

n+1

Remarques :
e dans ii. et iii. on peut prendre a = e et on obtient e”.

e il faut se souvenir que :

logarithmes <« polynémes <« exponentielless <« factorielle

1.2 Equivalence

Soit u et v deux suites avec v qui ne s’annulent pas & partir d’un certain rang.

Up,
On dit que u est équivalent & v lorsque lim lim — = 1; on note alors u, ~ v, .
n——+oo Un

Remarque : la proposition qui suit justifie le vocabulaire employé.

Proposition
La relation ~ entre deux suites (qui ne s’annulent pas a partir d’un certain rang) est une relation d’équivalence,
c’est-a-dire qu’elle est :

1 1
Exemples : n®> +3n+1 ~ et sin () ~ —.
n

. sin (l)
En effet, lim —F " =1 car
n—-4oo by



Proposition (définition alternative)

Soit u et v deux suites. u,, ~ vy, si, et seulement si, u, = v, + o(vy).

Démonstration

. u L Up —
Up ~ Uy == lim — =1 <= lim ——" = 0 <= u, — v, = 0(vy) <= U, = v, + 0(vy,)

Remarque :

a) la proposition précédente est fondamentale, elle annonce que I’équivalence est « I’égalité & un petit o prés » ;
cela sera central dans ’étude des développements limités.

b) Lorsqu’on travaille avec une somme, on veillera a conserver uniquement le terme significatif. Par exemple,
onae”+n?+1~e”+n?~e"+1 mais la seule équivalence vraiment pertinente ici est e® +n? + 1 ~

Proposition (Lien entre équivalents et limites)
Soit u et v deux suites telles que u, ~ v,.

— Si u n’a pas de limite alors

— Si uw admet une limite alors

Remarque : si v et v ont la méme limite ¢ € R a-t-on u,, ~ v, ?

Théoréme (Calculs d’équivalents par opérations)
L’équivalence est compatible avec le produit, le quotient, les puissances.
Autrement dit, si u,v et w sont des suites telles que u,, ~ v, alors :

U, Un Wy Wy
Uy X Wy ~ Uy X Wy ; — ~ ;

. JaNeY «
) o ’ — N ) Up ~ Uy (QGR)
Wnp, W, Unp, Un

Remarques :

a) pour alleger I’énoncé du théoréme précédent, on a omis de demander que les suites ne s’annulent pas a partir
d’un certain rang pour assurer ’existence des quotients.

b) Ces propriétés se démontrent simplement en revenant aux définitions, par exemple :

Méthode (pour déterminer une limite en utilisant des équivalents)

1. on travaille par produit, quotient, puissances sur les équivalents pour simplifier ’expression & étudier ;
2. les « petits o » disparaissent ;

3. lorsque 'expression a une limite simple & déterminer, on s’arréte.

Mise en oceuvre : exercices 1, 9 et 10



Exemples :
) 3n? +cos(n)  3n? 3n? 3 3n? + cos(n) 3

~Y ~Y ~S — d —_— —_
Gn-12 ~ GnE "~ 2m2 " 25 % TBn_1)7 ate 25

1 1\? 11 1
b) n sin? <) ~n <) ~MNn— = —;onen déduit n sin? <> — 0.
n n n n n n——+oo

Remarque : on voit bien, avec ce dernier exemple, que la notion d’équivalent est plus forte que celle de limite :
on a plus d’information en sachant nsin2( L L

L1y ~ L gqu'en sachant nsin?() — 0.
n n "7 n—+4oco

‘ATTENTION : avec les équivalents, il faut se méfier des sommes et des différences.

Exemple : e +n? ~e" +n? et e® +n? ~ e la différence donnerait 0 ~ n?!

‘ATTENTION : un « équivalent 4 0 » n’a aucun sens! ‘

2 Relations de comparaisons : cas des fonctions

Nous allons adapter aux fonctions ce qui a été vu pour les suites. La différence notable est qu’on va travailler
pour des limites en a € R. Dans le cas de deux suites, une comparaison asymptotique se passe nécessairement
pour n — +o0o (on peut écrire u, = o(v,) sans préciser « pour n — —+oo »); pour les fonctions, il faudra
systématiquement indiquer dans quel voisinage on travaille.

Tous les résultats vus pour les suites demeurent vrais dans le cas des fonctions; on se limitera dans
ce paragraphe a donner ceux qui sont les plus utiles.

Dans la suite, a est un élément de R. Sauf mention contraire, les fonctions considérées seront définies au voisinage
de a (sauf, peut-étre, en a), et ne s’annuleront pas au voisinage de a (sauf, peut-étre, en a). V, désignera un
voisinage de a (peut-étre privé de a).

Soit f, g deux fonctions. On dit que :

e g domine f en a lorsqu’il existe un voisinage de a sur lequel 5 est bornée.
On note alors f(z) = O(g(x)).
r—a

e f est négligeable devant g en a lorsque

e f est équivalente & g en a lorsque

Exemple : soit deux entiers naturels n < p. Compléter les puissances de x avec n et p :

En effet,

On dit que f est négligeable devant g au voisinage de a s'il existe une fonction £(x) définie sur un voisinage
V., de a telle qu’on ait :
e(x) — 0 et Vo € Vg, f(x) = g(z)e(x)

r—a

Remarque : On avait déja introduit ce type de notation



Proposition (Lien entre les relations)
 Si f(z) = olg(x) ou f(@) ~ g(x) alors
o f(z) ~ g(x) si, et seulement si, f(z) — g(z) = o(g(x))

r—a Tr—ra

Remarque : on en déduit des définitions alternatives de 1’équivalence.

f(@) ~ g(z) < f(z) —

r—a

Proposition (Propriétés conservées par ~)
Soit f et g deux fonctions telles que f(x) ~ g(x).
r—a

i. Si f admet une limite en a alors
ii. Si f ne s’annule pas au voisinage de a alors

iii. Si f est de signe constant au voisinage de a alors

Proposition (Opérations avec les relations)
Soit des fonctions f, g, h, k; deux réels A et p.

e Domination et négligeabilité (on écrit uniquement pour o) :

i. Si f(x) = o(h(x)) et g(x) = o(h(x)) alors Af(x) + pug(x) =,

T—ra T—ra x

ii. Si f(z) i o(h(x)) et g(z) = o(k(z)) alors f(x)g(x) .

e Equivalence :

i. L’équivalence n’est pas compatible avec la somme (en général).

ii. Si f(x) o~ h(zx) et g(x) o~ k(x) alors f(x)g(x) s

iii. Si f(z) s h(z) et f ne s’annule pas au voisinage de a alors ﬁ

Tr—ra
Remarque : Pour les équivalences, iii. et ii. permettent de déduire que
Par ailleurs, en raisonnant par récurrence avec ii. on obtient
Proposition (Substitution dans les équivalents)
Soit f, g des fonctions définies au voisinage de a telles que f(z) ~ g(z).
z—
Soit ¢ une fonction définie au voisinage de b € R telle que ¢(x) —>b a.
T—
On a:
Démonstration fo ¥ ¥
Par composition des limites : lim J(z) = lim =(p(z)) = lim =(¢) = 1. [ |
z—b g O z—b g t—a g

Remarque : on a volontairement omis le mot composition de 1'énoncé (qui a été remplacé par substitution)
car on ne peut composer les équivalents qu’a droite.



Théoréme (Equivalents classiques)
1. Polynémes : soit P est un polynéme de degré n, P(x) = a,z™ + U1 " V4 ™

P(x) ~ ;o Plx) ~ ;o Plz) ~
(I‘) z—0 ’ (T) T—400 : (7) T——00
2. Fonctions trigonométriques : sinxz ~ et cosx ~
z—0 z—0
3. Exponentielle et logarithme : e —1 ~ et In(l+z) ~
- z—0 x—0

A MEMORISER :
e Deux fonctions équivalentes en a € R ont des comportements semblables en a : signe, limite.

e On peut se servir des équivalents pour déterminer des limites et donc traiter des questions comme la
continuité ou la dérivabilité en un point.

e Dans les calculs avec les équivalents, on peut faire des produits, des quotients, des substitutions MAIS
il est interdit d’additionner, de soustraire des équivalents et on ne compose pas les équivalents (en
général).

3 Développements limités

Dans la suite, a désigne un réel (ce sera souvent 0). Les fonctions considérées (f, g) sont définies au voisinage
de a (on verra sur des exemples que ce voisinage de a pourra éventuellement étre privé de a).

L’objet des développements limités est d’approcher localement les fonctions par des polynémes.

En particulier, les développements limités vont donc nous fournir des équivalents polynomiaux.

3.1 Généralités

3.1.1 Définition, premiers développements limités

Soit n € N, f une fonction définie au voisinage du réel a.
On dit que f admet un développement limité d’ordre n en a s'il existe un polynéme P € R, [X] tel que,
sur un voisinage de a, on ait :

f(z) = f(a+h)=P(h)+ R(h) avec R(h) = o(h")

h—0

Le polynéme P(h) = by + bih + - -+ b,h"™ est appelé partie réguliére du développement limiteé.

Remarques :
— on note DL, (a) pour "développement limité d’ordre n en a".
— La notion de négligeabilité est une notion locale : il faudra systématiquement préciser de quel voisinage
il s’agit (souvent h — 0).
— Le changement de variable z = a + h n’est pas obligatoire mais il facilite la lisibilité. Tous les énoncés
peuvent se reformuler avec x, c’est-a-dire en remplagant les h par x — a.

Exemples :

a) f(x) =22+ 3z + 5 au voisinage de a = 1

Remarque : cet exemple est un peu idiot! En effet, pour approcher un polynéme f par un polynéme P il
suffit de prendre P = f! Néanmoins, on peut remarquer que si I’on veut un développement limité & un ordre
inférieur, il suffit de tronquer le développement limité, ce qui est une régle générale (que l'on verra un peu
plus loin).



1

b) fe) = —

au voisinage de a = 0

— A Vordre 2 : prouver que f(h) o 1+ h+ h?+ o(h?)
—

— A Pordre n :

Remarque : si la partie réguliére du DL a ses coefficients d’ordres les plus faibles nuls, c¢’est-a-dire si elle est
de la forme P(h) = bih* + bk-+1h,k+1 + -+ 4+ byh", alors on I’écrit sous la forme dite normalisée :

P(h) = ¥ (b + bpyrh + -+ b, k" F)

3.1.2 Plusieurs développements limités d’ordres différents : quel intérét ?

Travaillons sur un exemple : on a vu ﬁ = 1+ z+o(x) et ﬁ =0 1+2z+ 2%+ o(z?).
T—r T—r

Quelle différence entre ces deux développements limités ? Lequel est le meilleur ?

Les o(z™) correspondent & lerreur commise. Par analogie avec I'approximation décimale, ¢’est comme si on
disait m ~ 3,1 (4 0,1 prés) et m ~ 3,14 (a4 0,01 prés) .

1
Lorsqu’on écrit = 142+ 2%+ o(2?) on donne plus d’informations qu’avec = 1l4+z+o(x). En
1—x 2—0 1—x z—0
2 2 2
effet, %(‘”) =z + zo(fz ) — 0 donc 2% + o(2?) = o(x).
z—0 z—0

Pour reprendre 'analogie avec ’écriture décimale, il y aurait quelque chose de paradoxal & écrire m ~ 3, 14159
a 0,1 prés. En effet, si on annonce une précision a 1071, quel portée donner & des décimales plus précises ? On
am~3,199999 4 0,1 pres!

1 1
De fagon analogue, s'il est vrai que = 1+2+ 2%+ o(z) on a aussi = 1+a2+52%+o(x)!
1—x z—0 1—x z—0

Les propriétés qui ont été vues sur cet exemple sont vraies de fagon générale :

Proposition
Soit n € N*. Pour tout p € [I;n — 1] on a :

: _ » . n »
Lt = o(zP) ii. un Igo(x ) est un mgo(aﬁ )

En conséquence,

Proposition
Si f admet un DL, (a) alors, pour tout p < n, f admet un DL,(a) obtenu par troncature, c’est-a-dire en
supprimant tous les termes de degré supérieurs a p + 1 (qui se retrouvent englobés dans le reste).




3.2 Formule de Taylor-Young, développements limités de référence

Théoréme
Si f est de classe €™ alors f admet un DL, (a) donné par :

n

k
f@) = rath) = SO + o)

Exemples : donner les DL, (0) des fonctions suivantes.

d) In(14+2z) =

z—0

) (L+2)* =

f) Arct =
) Arctan(z) =
Remarques :
— ces développements limités sont & connaitre par coeur! On va voir qu’ils permettent, par opérations, de
trouver beaucoup d’autres DL.
— La formule de Taylor-Young sera prouvée lors du chapitre sur 'intégration.

3.3 Propriétés des développements limités

3.3.1 Premiéres propriétés

Proposition
Il y a unicité du développement limité : si f admet un DL, (a) alors ce développement est unique.

Démonstration
Par I’absurde. Supposons f(x) = f(a+ h) o bo + bih + -+ bpyh? + by 1 hPTE + - 4 by h™ + o(h™)
—

Proposition (Développements limités en 0 et parité)
Si f admet un DL, (0) de partie réguliére P.
e si f est paire alors P n’a que des monomes de puissances paires
e si f est impaire alors P n’a que des monoémes de puissances impaires

Exemple : les DL,, de cos et sin en 0 n’ont que des mondémes pairs et impairs respectivement.

Attention : ce n’est valable QUE pour les développements en 0!



3.3.2 Opérations sur les développements limités

Proposition
Soit (A, p) € R2.

Plus précisément si f(a+h) = Pr(h) +o(h™) et gla+h) = Py(h)+ o(h™) alors :
h—0 h—0
e la partie réguliére du DL, (a) de Af + ug est

e la partie réguliére du DL, (a) de f X g est

Exemples :

1. Donner un DL4(0) de f(z) = 3(z + 1) — 5e®

2. Donner un DL3(0) de f(x) = sin(x) cos(z)

Remarque : on peut gratuitement gagner un ordre sur cet exemple. Comment ?

Proposition
Si f admet un DL, (0) et g un DL, (f(0)) alors g o f admet un DL, (0).

Si les fonctions f et g admettent des DL, (a) alors \f + ug et f x g admettent aussi des DL, (a).

Plus précisément, si Py et P, sont les parties réguliéres des développements de f et g alors le développement

de g o f a pour partie réguliére la troncature de P, o P au degré n.

1
Exemple : déterminer le DL3(0) de f(z) = T—sn(2)
— sin(x

)
y:1+x+x2+fx3

6

N

Y=17—"—7"—
\_/
7
e
/
T I/ 0
- /
/2 ,

10

/2



Méthode (Pour calculer le développement limité d’un quotient)
On se sert de la composition et du DL de x — ﬁ

Mise en ceuvre : exercices 2, 5 et 9.
1

Exemple : déterminer le DL4(0) de f(z) = cos(w)

T 5zt
2 24

<+

0 /2

Exercice (Un nouveau DL de référence)
Déterminer le DL3(0) de tan.

Réponse
On a

3.3.3 Développement d’une primitive, de la dérivée
Proposition
Soit f une fonction et F' une primitive de f. Si f admet un DL, (a) de partie réguliére P alors F admet un
DL, 1(a) de partie réguliere F(0) + [ P.

Remarque : on a noté [ P la primitive de P dont le coefficient constant est 0.

Exemples : Donner les DL5(0) de In(1 — z) et de Arctan(x).

11



Proposition
Soit f une fonction de classe €™ *1. Alors f et f’ admettent des DL d’ordres respectifs n + 1 et n en a.
De plus, le DL,, de f’ s’obtient en dérivant terme-a-terme le DL, 1 de f.

Remarque : 'existence des DL est assurée par

1
Exemple : rappeler le DL, (0) de In(1 + ) puis retrouver celui de T .
x

3.4 Applications
3.4.1 Etude locale d’une fonction

La formule de Taylor Young permet d’avoir un DL, pour les fonctions de classe ¥"™. La réciproque est-elle
vraie? Si f admet un DL, alors f est-elle nécessairement de classe €™ 7

Proposition
Si f est définie en «a :

i. si f admet un DLg(a): f(a+ h) o by + o(1) alors f est continue en a et f(a) = by ;
—

ii. si f admet un DL;(a): f(a+ h) o by + b1h + o(h) alors f est dérivable en a et f/(a) = by ;
—

iii. ATTENTION : si f admet un DL,(a) avec n > 1 alors on ne peut pas conclure que f est n fois
dérivable en a.

1
Exemple : la fonction définie pour 2 # 0 par f(z) = 2% sin (2) vérifie f(x) = o(x?).
x

Elle se prolonge donc par continuité en 0 en posant
Le prolongement ainsi obtenu est dérivable en 0 car :

Pour z #0 on a f'(z) = et donc on déduit que f n’est pas de classe €* (en 0).

Pourtant, f(z) = o(x?) donc f admet un DL5(0) (de partie réguliére nulle).

Remarque : dans la proposition précédente, si f n’est pas définie en a, ’existence d’'un DLy en a permet de
prolonger f par continuité en a ; I'existence d’'un DL, assure que le prolongement obtenu est dérivable en a.

Exercice
On cousidére, pour x # 0, la fonction f(z) =

cos(z) — e

x
1. Prouver que f est prolongeable par continuité.

2. Justifiez que ce prolongement est dérivable en 0 et déterminer une équation de sa tangente T en 0.

3. Précisez les positions relatives de 1" et de €.

12



Réponse
On a

Proposition
Si f admet un DL d’ordre au moins 2 en a : f(x) = bo + bi(z —a) + by(x — a)? 4+ o((x — a)?) avec b, # 0

alors la courbe de f admet pour tangente au point d’abscisse a la droite T, d’équation y = by + b1(x — a).

De plus, au voisinage de a, les positions relatives de €y et de T' au point d’abscisse a sont déterminées par le
signe de b,(xz — a)P.

3.4.2 Etude au voisinage de 1’infini

Soit f une fonction définie au voisinage de +o00 (c’est-a-dire sur un intervalle |M; 4o00[), € sa courbe. On
dit que la droite y = ax + b est asymptote & € lorsque liIJIrl f(z) = (ax +b) =0.
Tr—r+00

Remarques :
o Graphiquement, €5 et y = ax + b vont devenir trés proches au voisinage de +o0.
e Si a = 0 on parle d’asymptote horizontale, sinon d’asymptote oblique.

e La définition s’adapte simplement pour une asymptote en —oo.

Méthode (Pour étudier une fonction au voisinage de +o0)
On pose = = % et on fait un développement limité pour h — 0.

Mise en cceuvre : exercices 3 et 10.

13



Exercice
On considére, pour x > 0, f(z) = Vz2 + .
a) Justifier que f est définie au voisinage de +oo.

b) Prouver que f(z) = v+ 35— 5 +o0(2)
TrT——+0o0

)
c) En déduire 'existence d’une asymptote & € en +oo.
)

d) Précisez les positions relatives de € et de son asymptote.

Réponse
On a
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