
Chapitre 14 : analyse asymptotique
Introduction
Nous avons donné un sens précis aux limites, pour les suites et pour les fonctions. Ainsi, dire qu’une suite u
tend vers +∞ signifie :

Que dire de deux suites (ou deux fonctions) qui ont la même limite ? Tendent-elles vers cette limite commune
« de façon analogue » ? Ou bien peut-on comparer leur comportement asymptotique ?
La réponse est oui, c’est ce que nous allons développer dans un premier temps.
Dans un second temps, nous allons comparer les comportements asymptotiques des suites et fonctions à ceux
d’une famille de référence : les polynômes. Cela sera fait grâce à un nouvel outil : le développement limité.

exp, ln, x 7→ x2, x 7→
√
x, x 7→ 3

2x et x 7→ x
2 + sin(x) : toutes ces fonctions ont la même limite en +∞.

1 Relations de comparaisons asymptotiques : cas des suites
Remarque : pour une suite de réels, le seul comportement asymptotique à étudier est pour n → +∞ ; de ce
point de vue, les suites sont plus simples que les fonctions.
Comparer le comportement asymptotique de deux suites c’est les comparer pour « n → +∞ » et donc pas sur
leurs premiers termes.

1.1 Domination, négligeabilité

Définition
Soient u et v deux suites, avec v qui ne s’annule jamais à-partir d’un certain rang.

i. On dit que u est dominée par v lorsque
u

v
est bornée (à partir d’un certain rang), autrement dit :

On note alors un = O(vn) (et on dit "grand O").

ii. On dit que u est négligeable devant v lorsque lim
n→+∞

un

vn
= 0. On note alors un = o(vn) (on dit "petit

o") ; on croise encore parfois un ≪ vn mais cette notation est désuète.
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Exemples :

a) Prouver que 3n4 − n2 + 2n+ 1 = O(n4).

b) Prouver que n2 − 4n = o(n5 − 1).

Exercice
Que dire de suites u et v qui vérifient u = O(1) et v = o(1) ?

Réponse
— La suite u

— La suite v

Les deux propositions qui suivent sont des conséquences directes des définitions et des opérations sur les limites.

Proposition (Lien entre négligeabilité et domination)
Soit (un)n∈N, (vn)n∈N et (wn)n∈N des suites.

i. Si un = o(vn) alors un = O(vn).

ii. Si un = o(vn) et vn = o(wn) alors un = o(wn).

iii. Si un = o(vn) et vn = O(wn) alors un = o(wn).

iv. Si un = O(vn) et vn = o(wn) alors un = o(wn).

v. Si un = O(vn) et vn = O(wn) alors un = O(wn).

Exemple : sin(n) = o(n) et n = o(n!) donc sin(n) = o(n!)

Proposition (Négligeabilité et domination : comportement lorsqu’on fait des opérations)
Soit (un)n∈N, (vn)n∈N, (wn)n∈N et (xn)n∈N des suites, λ ∈ R.

i. Si un = o(wn) et vn = o(wn) alors λun + µvn = o(wn).

ii. Si un = o(wn) et vn = o(xn) alors unvn = o(wnxn).

iii. On peut remplacer tous les o par des O dans les propositions précédentes.

Remarque : la formulation a été privilégiée avec la négligeabilité qui est plus utilisée que la domination.

Proposition (Comparaisons usuelles)
i. ∀(α, β) ∈ (R+∗)2, lnβ(n) = o(nα)

ii. ∀α ∈ R+∗,∀a > 1, nα = o(an)

iii. ∀a ∈ R, an = o(n!).
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Démonstration
— Commençons par prouver que ln(n) = o(n) :

On a, ∀n ≥ 1, ln(n) =

∫ n

1

1

x
dx ≤

∫ n

1

1√
x

dx =
[
2
√
x
]n
1
= 2(

√
n− 1) ≤ 2

√
n.

Il suit que ∀n ≥ 1, 0 ≤ ln(n)

n
≤ 2√

n
et donc, d’après le théorème des gendarmes,

ln(n)

n
−→

n→+∞
0 soit

ln(n) = o(n).

— Montrons à présent que ∀(α, β) ∈ (R+∗)2, lnβ(n) = o(nα).

Soit (α, β) ∈ (R+∗)2, ∀n ≥ 1,
lnβ(n)

nα
=

(
ln(n)

n
α
β

)β

=

(
β
α ln(n)

α
β

n
α
β

)β

=

(
β

α

)β
(
ln(n)

α
β

n
α
β

)β

.

Or, en vertu du point précédent et par composition,
ln(n)

α
β

n
α
β

−→
n→+∞

0.

On a donc bien prouvé i. lnβ(n) = o(nα).

— Prouvons ii. Soit α ∈ R+∗ et a > 1.

On a, pour n ≥ 1,
nα

an
=

eα ln(n)

en ln(a)
= exp (α ln(n)− n ln(a)) = exp

(
n(α

ln(n)

n
− ln(a))

)
.

On a a > 1 donc ln(a) > 0 puis n(α ln(n)
n − ln(a)) −→

n→+∞
−∞.

En composant avec exp on obtient bien que nα = o(an).

— Prouvons iii. ∀a ∈ R, an = o(n!).
Pour a = 0, le résultat est évident. Ensuite, on observe que, ∀a ∈ R∗, an = O(|a|n) et donc il suffit de
montrer iii. pour a > 0.

Soit n0 = ⌊a⌋. On a, pour n ≥ n0 :
an

n!
=

an0

n0!
× a

n0 + 1
× · · · × a

n︸ ︷︷ ︸
n−n0 facteurs

≤ an0

n0!
×
(

a

n0 + 1

)n−n0

.

Or, 0 < a
n0+1 < 1 donc

(
a

n0+1

)n−n0

−→
n→+∞

0 et on a bien an = o(n!).

Remarques :
• dans ii. et iii. on peut prendre a = e et on obtient en.

• il faut se souvenir que :

logarithmes ≪ polynômes ≪ exponentielles ≪ factorielle

1.2 Equivalence

Définition
Soit u et v deux suites avec v qui ne s’annulent pas à partir d’un certain rang.
On dit que u est équivalent à v lorsque lim lim

n→+∞

un

vn
= 1 ; on note alors un ∼ vn .

Remarque : la proposition qui suit justifie le vocabulaire employé.

Proposition
La relation ∼ entre deux suites (qui ne s’annulent pas à partir d’un certain rang) est une relation d’équivalence,
c’est-à-dire qu’elle est :

•

•

•

Exemples : n2 + 3n+ 1 ∼ et sin

(
1

n

)
∼ 1

n
.

En effet, lim
n→+∞

sin
(
1
n

)
1
n

= 1 car
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Proposition (définition alternative)
Soit u et v deux suites. un ∼ vn si, et seulement si, un = vn + o(vn).

Démonstration

un ∼ vn ⇐⇒ lim
n

un

vn
= 1 ⇐⇒ lim

n

un − vn
vn

= 0 ⇐⇒ un − vn = o(vn) ⇐⇒ un = vn + o(vn)

Remarque :
a) la proposition précédente est fondamentale, elle annonce que l’équivalence est « l’égalité à un petit o près » ;

cela sera central dans l’étude des développements limités.
b) Lorsqu’on travaille avec une somme, on veillera à conserver uniquement le terme significatif. Par exemple,

on a en + n2 + 1 ∼ en + n2 ∼ en + 1 mais la seule équivalence vraiment pertinente ici est en + n2 + 1 ∼

Proposition (Lien entre équivalents et limites)
Soit u et v deux suites telles que un ∼ vn.

— Si u n’a pas de limite alors

— Si u admet une limite alors

Remarque : si u et v ont la même limite ℓ ∈ R a-t-on un ∼ vn ?

Théorème (Calculs d’équivalents par opérations)
L’équivalence est compatible avec le produit, le quotient, les puissances.
Autrement dit, si u, v et w sont des suites telles que un ∼ vn alors :

un × wn ∼ vn × wn ;
un

wn
∼ vn

wn
;

wn

un
∼ wn

vn
; uα

n ∼ vαn (α ∈ R)

Remarques :
a) pour alleger l’énoncé du théorème précédent, on a omis de demander que les suites ne s’annulent pas à partir

d’un certain rang pour assurer l’existence des quotients.
b) Ces propriétés se démontrent simplement en revenant aux définitions, par exemple :

Méthode (pour déterminer une limite en utilisant des équivalents)
1. on travaille par produit, quotient, puissances sur les équivalents pour simplifier l’expression à étudier ;
2. les « petits o » disparaissent ;
3. lorsque l’expression a une limite simple à déterminer, on s’arrête.

Mise en oœuvre : exercices 1, 9 et 10

4



Exemples :

a)
3n2 + cos(n)

(5n− 1)2
∼ 3n2

(5n)2
∼ 3n2

25n2
∼ 3

25
donc

3n2 + cos(n)

(5n− 1)2
−→

n→+∞

3

25
.

b) n sin2
(
1

n

)
∼ n

(
1

n

)2

∼ n
1

n2
=

1

n
; on en déduit n sin2

(
1

n

)
−→

n→+∞
0.

Remarque : on voit bien, avec ce dernier exemple, que la notion d’équivalent est plus forte que celle de limite :
on a plus d’information en sachant n sin2( 1n ) ∼

1
n qu’en sachant n sin2( 1n ) −→

n→+∞
0.

ATTENTION : avec les équivalents, il faut se méfier des sommes et des différences.

Exemple : en + n2 ∼ en + n2 et en + n2 ∼ en la différence donnerait 0 ∼ n2 !

ATTENTION : un « équivalent à 0 » n’a aucun sens !

2 Relations de comparaisons : cas des fonctions
Nous allons adapter aux fonctions ce qui a été vu pour les suites. La différence notable est qu’on va travailler
pour des limites en a ∈ R. Dans le cas de deux suites, une comparaison asymptotique se passe nécessairement
pour n → +∞ (on peut écrire un = o(vn) sans préciser « pour n → +∞ ») ; pour les fonctions, il faudra
systématiquement indiquer dans quel voisinage on travaille.

Tous les résultats vus pour les suites demeurent vrais dans le cas des fonctions ; on se limitera dans
ce paragraphe à donner ceux qui sont les plus utiles.

Dans la suite, a est un élément de R. Sauf mention contraire, les fonctions considérées seront définies au voisinage
de a (sauf, peut-être, en a), et ne s’annuleront pas au voisinage de a (sauf, peut-être, en a). Va désignera un
voisinage de a (peut-être privé de a).

Définition
Soit f , g deux fonctions. On dit que :

• g domine f en a lorsqu’il existe un voisinage de a sur lequel f
g est bornée.

On note alors f(x) =
x→a

O(g(x)).

• f est négligeable devant g en a lorsque

• f est équivalente à g en a lorsque

Exemple : soit deux entiers naturels n < p. Compléter les puissances de x avec n et p :

x =
x→0

o(x ) et x =
x→+∞

o(x )

En effet,

Définition (définition alternative de la négligeabilité)
On dit que f est négligeable devant g au voisinage de a s’il existe une fonction ε(x) définie sur un voisinage
Va de a telle qu’on ait :

ε(x) −→
x→a

0 et ∀x ∈ Va, f(x) = g(x)ε(x)

Remarque : On avait déjà introduit ce type de notation
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Proposition (Lien entre les relations)
• Si f(x) =

x→a
o(g(x)) ou f(x) ∼

x→a
g(x) alors

• f(x) ∼
x→a

g(x) si, et seulement si, f(x)− g(x) =
x→a

o(g(x))

Remarque : on en déduit des définitions alternatives de l’équivalence.

f(x) ∼
x→a

g(x) ⇐⇒ f(x) ⇐⇒

Proposition (Propriétés conservées par ∼)
Soit f et g deux fonctions telles que f(x) ∼

x→a
g(x).

i. Si f admet une limite en a alors

ii. Si f ne s’annule pas au voisinage de a alors

iii. Si f est de signe constant au voisinage de a alors

Proposition (Opérations avec les relations)
Soit des fonctions f, g, h, k ; deux réels λ et µ.

• Domination et négligeabilité (on écrit uniquement pour o) :

i. Si f(x) =
x→a

o(h(x)) et g(x) =
x→a

o(h(x)) alors λf(x) + µg(x) =
x→a

.

ii. Si f(x) =
x→a

o(h(x)) et g(x) =
x→a

o(k(x)) alors f(x)g(x) =
x→a

.

• Équivalence :

i. L’équivalence n’est pas compatible avec la somme (en général).

ii. Si f(x) ∼
x→a

h(x) et g(x) ∼
x→a

k(x) alors f(x)g(x) ∼
x→a

.

iii. Si f(x) ∼
x→a

h(x) et f ne s’annule pas au voisinage de a alors 1
f(x) ∼

x→a

Remarque : Pour les équivalences, iii. et ii. permettent de déduire que

Par ailleurs, en raisonnant par récurrence avec ii. on obtient

Proposition (Substitution dans les équivalents)
Soit f, g des fonctions définies au voisinage de a telles que f(x) ∼

x→a
g(x).

Soit φ une fonction définie au voisinage de b ∈ R telle que φ(x) →
x→b

a.

On a :

Démonstration
Par composition des limites : lim

x→b

f ◦ φ
g ◦ φ

(x) = lim
x→b

f

g
(φ(x)) = lim

t→a

f

g
(t) = 1. ■

Remarque : on a volontairement omis le mot composition de l’énoncé (qui a été remplacé par substitution)
car on ne peut composer les équivalents qu’à droite.

6



Théorème (Equivalents classiques)
1. Polynômes : soit P est un polynôme de degré n, P (x) = anx

n + an−1x
n−1 + . . . an−rx

n−r.

P (x) ∼
x→0

; P (x) ∼
x→+∞

; P (x) ∼
x→−∞

2. Fonctions trigonométriques : sinx ∼
x→0

et cosx ∼
x→0

3. Exponentielle et logarithme : ex − 1 ∼
x→0

et ln(1 + x) ∼
x→0

À MÉMORISER :

• Deux fonctions équivalentes en a ∈ R ont des comportements semblables en a : signe, limite.

• On peut se servir des équivalents pour déterminer des limites et donc traiter des questions comme la
continuité ou la dérivabilité en un point.

• Dans les calculs avec les équivalents, on peut faire des produits, des quotients, des substitutions MAIS
il est interdit d’additionner, de soustraire des équivalents et on ne compose pas les équivalents (en
général).

3 Développements limités
Dans la suite, a désigne un réel (ce sera souvent 0). Les fonctions considérées (f , g) sont définies au voisinage
de a (on verra sur des exemples que ce voisinage de a pourra éventuellement être privé de a).
L’objet des développements limités est d’approcher localement les fonctions par des polynômes.
En particulier, les développements limités vont donc nous fournir des équivalents polynomiaux.

3.1 Généralités
3.1.1 Définition, premiers développements limités

Définition
Soit n ∈ N, f une fonction définie au voisinage du réel a.
On dit que f admet un développement limité d’ordre n en a s’il existe un polynôme P ∈ Rn[X] tel que,
sur un voisinage de a, on ait :

f(x) = f(a+ h) = P (h) +R(h) avec R(h) =
h→0

o(hn)

Le polynôme P (h) = b0 + b1h+ · · ·+ bnh
n est appelé partie régulière du développement limité.

Remarques :
— on note DLn(a) pour "développement limité d’ordre n en a".
— La notion de négligeabilité est une notion locale : il faudra systématiquement préciser de quel voisinage

il s’agit (souvent h → 0).
— Le changement de variable x = a + h n’est pas obligatoire mais il facilite la lisibilité. Tous les énoncés

peuvent se reformuler avec x, c’est-à-dire en remplaçant les h par x− a.

Exemples :
a) f(x) = x2 + 3x+ 5 au voisinage de a = 1

Remarque : cet exemple est un peu idiot ! En effet, pour approcher un polynôme f par un polynôme P il
suffit de prendre P = f ! Néanmoins, on peut remarquer que si l’on veut un développement limité à un ordre
inférieur, il suffit de tronquer le développement limité, ce qui est une règle générale (que l’on verra un peu
plus loin).

7



b) f(x) =
1

1− x
au voisinage de a = 0

— A l’ordre 2 : prouver que f(h) =
h→0

1 + h+ h2 + o(h2)

— A l’ordre n :

Remarque : si la partie régulière du DL a ses coefficients d’ordres les plus faibles nuls, c’est-à-dire si elle est
de la forme P (h) = bkh

k + bk+1h
k+1 + · · ·+ bnh

n, alors on l’écrit sous la forme dite normalisée :

P (h) = hk(bk + bk+1h+ · · ·+ bnh
n−k)

3.1.2 Plusieurs développements limités d’ordres différents : quel intérêt ?

Travaillons sur un exemple : on a vu 1
1−x =

x→0
1 + x+ o(x) et 1

1−x =
x→0

= 1 + x+ x2 + o(x2).

Quelle différence entre ces deux développements limités ? Lequel est le meilleur ?

Les o(xn) correspondent à l’erreur commise. Par analogie avec l’approximation décimale, c’est comme si on
disait π ≃ 3, 1 (à 0,1 près) et π ≃ 3, 14 (à 0,01 près) .

Lorsqu’on écrit
1

1− x
=

x→0
1 + x+ x2 + o(x2) on donne plus d’informations qu’avec

1

1− x
=

x→0
1 + x+ o(x). En

effet, x2+o(x2)
x = x+ x o(x2)

x2 −→
x→0

0 donc x2 + o(x2) =
x→0

o(x).

Pour reprendre l’analogie avec l’écriture décimale, il y aurait quelque chose de paradoxal à écrire π ≃ 3, 14159
à 0, 1 près. En effet, si on annonce une précision à 10−1, quel portée donner à des décimales plus précises ? On
a π ≃ 3, 199999 à 0, 1 près !

De façon analogue, s’il est vrai que
1

1− x
=

x→0
1 + x+ x2 + o(x) on a aussi

1

1− x
=

x→0
1 + x+ 5x2 + o(x) !

Les propriétés qui ont été vues sur cet exemple sont vraies de façon générale :

Proposition
Soit n ∈ N∗. Pour tout p ∈ [[1;n− 1]] on a :

i. xn =
x→0

o(xp) ii. un o
x→0

(xn) est un o
x→0

(xp)

En conséquence,

Proposition
Si f admet un DLn(a) alors, pour tout p ≤ n, f admet un DLp(a) obtenu par troncature, c’est-à-dire en
supprimant tous les termes de degré supérieurs à p+ 1 (qui se retrouvent englobés dans le reste).
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3.2 Formule de Taylor-Young, développements limités de référence

Théorème
Si f est de classe C n alors f admet un DLn(a) donné par :

f(x) = f(a+ h) =
h→0

n∑
k=0

hk

k!
f (k)(a) + o(hn)

Exemples : donner les DLn(0) des fonctions suivantes.

a) ex =
x→0

b) cos(x) =
x→0

c) sin(x) =
x→0

d) ln(1 + x) =
x→0

e) (1 + x)α =
h→0

f) Arctan(x) =
x→0

Remarques :
— ces développements limités sont à connaître par cœur ! On va voir qu’ils permettent, par opérations, de

trouver beaucoup d’autres DL.
— La formule de Taylor-Young sera prouvée lors du chapitre sur l’intégration.

3.3 Propriétés des développements limités
3.3.1 Premières propriétés

Proposition
Il y a unicité du développement limité : si f admet un DLn(a) alors ce développement est unique.

Démonstration
Par l’absurde. Supposons f(x) = f(a+ h) =

h→0
b0 + b1h+ · · ·+ bph

p + bp+1h
p+1 + · · ·+ bnh

n + o(hn)

■

Proposition (Développements limités en 0 et parité)
Si f admet un DLn(0) de partie régulière P .

• si f est paire alors P n’a que des monômes de puissances paires
• si f est impaire alors P n’a que des monômes de puissances impaires

Exemple : les DLn de cos et sin en 0 n’ont que des monômes pairs et impairs respectivement.

Attention : ce n’est valable QUE pour les développements en 0 !
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3.3.2 Opérations sur les développements limités

Proposition
Soit (λ, µ) ∈ R2.
Si les fonctions f et g admettent des DLn(a) alors λf + µg et f × g admettent aussi des DLn(a).

Plus précisément si f(a+ h) =
h→0

Pf (h) + o(hn) et g(a+ h) =
h→0

Pg(h) + o(hn) alors :

• la partie régulière du DLn(a) de λf + µg est

• la partie régulière du DLn(a) de f × g est

Exemples :

1. Donner un DL4(0) de f(x) = 3(x+ 1)2 − 5ex

2. Donner un DL3(0) de f(x) = sin(x) cos(x)

Remarque : on peut gratuitement gagner un ordre sur cet exemple. Comment ?

Proposition
Si f admet un DLn(0) et g un DLn(f(0)) alors g ◦ f admet un DLn(0).
Plus précisément, si Pf et Pg sont les parties régulières des développements de f et g alors le développement
de g ◦ f a pour partie régulière la troncature de Pg ◦ Pf au degré n.

Exemple : déterminer le DL3(0) de f(x) =
1

1− sin(x)
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Méthode (Pour calculer le développement limité d’un quotient)
On se sert de la composition et du DL de x 7→ 1

1−x .

Mise en œuvre : exercices 2, 5 et 9.

Exemple : déterminer le DL4(0) de f(x) =
1

cos(x)

Exercice (Un nouveau DL de référence)
Déterminer le DL3(0) de tan.

Réponse
On a

3.3.3 Développement d’une primitive, de la dérivée

Proposition
Soit f une fonction et F une primitive de f . Si f admet un DLn(a) de partie régulière P alors F admet un
DLn+1(a) de partie régulière F (0) +

∫
P .

Remarque : on a noté
∫
P la primitive de P dont le coefficient constant est 0.

Exemples : Donner les DL5(0) de ln(1− x) et de Arctan(x).
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Proposition
Soit f une fonction de classe C n+1. Alors f et f ′ admettent des DL d’ordres respectifs n+ 1 et n en a.
De plus, le DLn de f ′ s’obtient en dérivant terme-à-terme le DLn+1 de f .

Remarque : l’existence des DL est assurée par

Exemple : rappeler le DLn(0) de ln(1 + x) puis retrouver celui de
1

1 + x
.

3.4 Applications
3.4.1 Etude locale d’une fonction

La formule de Taylor Young permet d’avoir un DLn pour les fonctions de classe C n. La réciproque est-elle
vraie ? Si f admet un DLn alors f est-elle nécessairement de classe C n ?

Proposition
Si f est définie en a :

i. si f admet un DL0(a) : f(a+ h) =
h→0

b0 + o(1) alors f est continue en a et f(a) = b0 ;

ii. si f admet un DL1(a) : f(a+ h) =
h→0

b0 + b1h+ o(h) alors f est dérivable en a et f ′(a) = b1 ;

iii. ATTENTION : si f admet un DLn(a) avec n > 1 alors on ne peut pas conclure que f est n fois
dérivable en a.

Exemple : la fonction définie pour x ̸= 0 par f(x) = x3 sin

(
1

x2

)
vérifie f(x) =

0
o(x2).

Elle se prolonge donc par continuité en 0 en posant

Le prolongement ainsi obtenu est dérivable en 0 car :

Pour x ̸= 0 on a f ′(x) = et donc on déduit que f n’est pas de classe C 1 (en 0).

Pourtant, f(x) =
0
o(x2) donc f admet un DL2(0) (de partie régulière nulle).

Remarque : dans la proposition précédente, si f n’est pas définie en a, l’existence d’un DL0 en a permet de
prolonger f par continuité en a ; l’existence d’un DL1 assure que le prolongement obtenu est dérivable en a.

Exercice
On considère, pour x ̸= 0, la fonction f(x) =

cos(x)− ex

x
.

1. Prouver que f est prolongeable par continuité.
2. Justifiez que ce prolongement est dérivable en 0 et déterminer une équation de sa tangente T en 0.
3. Précisez les positions relatives de T et de Cf .
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Réponse
On a

Proposition
Si f admet un DL d’ordre au moins 2 en a : f(x) =

x→a
b0 + b1(x− a) + bp(x− a)p + o((x− a)p) avec bp ̸= 0

alors la courbe de f admet pour tangente au point d’abscisse a la droite Ta d’équation y = b0 + b1(x− a).

De plus, au voisinage de a, les positions relatives de Cf et de T au point d’abscisse a sont déterminées par le
signe de bp(x− a)p.

3.4.2 Etude au voisinage de l’infini

Définition
Soit f une fonction définie au voisinage de +∞ (c’est-à-dire sur un intervalle ]M ; +∞[), Cf sa courbe. On
dit que la droite y = ax+ b est asymptote à Cf lorsque lim

x→+∞
f(x)− (ax+ b) = 0.

Remarques :

• Graphiquement, Cf et y = ax+ b vont devenir très proches au voisinage de +∞.

• Si a = 0 on parle d’asymptote horizontale, sinon d’asymptote oblique.

• La définition s’adapte simplement pour une asymptote en −∞.

Méthode (Pour étudier une fonction au voisinage de +∞)
On pose x = 1

h et on fait un développement limité pour h → 0.

Mise en œuvre : exercices 3 et 10.
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Exercice
On considère, pour x ≥ 0, f(x) =

√
x2 + x.

a) Justifier que f est définie au voisinage de +∞.
b) Prouver que f(x) =

x→+∞
x+ 1

2 − 1
8x + o

(
1
x

)
c) En déduire l’existence d’une asymptote à Cf en +∞.
d) Précisez les positions relatives de Cf et de son asymptote.

Réponse
On a
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