
Chapitre 15 : dénombrement, probabilités
Ce chapitre est en deux parties : dans un premier temps nous allons dénombrer des ensembles finis, autrement
dit compter leurs éléments. Dans un second temps on construira une théorie des probabilités sur les univers
finis, les dénombrements y joueront un rôle important.
Dans l’ensemble du chapitre, les notions abordées sont intuitives et on va apporter de la rigueur sur ce « bon
sens a priori ».

1 Ensembles finis, dénombrement

1.1 Rappels et notations

Définition
Soit E un ensemble.

• On dit que E est fini s’il existe un entier naturel non nul n tel qu’on puisse numéroter les éléments de
E de 1 à n. Autrement dit : s’il existe une bijection [[1;n]] → E.

• On appelle alors n le cardinal de E, que l’on note |E| on Card(E).
• On convient que ∅ est fini et que Card(∅) = 0.

À retenir : le cardinal d’un ensemble c’est le nombre d’éléments que contient cet ensemble.

Exemples :
a) Le cardinal de E = {Alice ; Bob ; Charles} est

Proposer deux bijections possibles entre [[1;Card(E)]] et E.

b) Des exemples d’ensembles qui ne sont pas finis :

Remarque : les ensembles qui ne sont pas finis sont dits infinis. Deux ensembles infinis qu’on peut mettre en
bijection sont dits équipotents. Par exemple, R est équipotent à ]0; 1[ :

Les ensembles infinis qui sont équipotents à N sont dits dénombrables (c’est le cas de N, Z, Q mais pas de R).
Dans le programme de 2è année, on traite les probabilités sur des univers dénombrables.

Remarque : lorsqu’un ensemble est fini, son cardinal est unique.

En effet, soit A un ensemble fini.

Supposons qu’il existe des bijections ϕ : [[1;n]] → A et ψ : [[1;m]] → A

on a alors ψ−1 ◦ ϕ qui est une bijection → et donc n = m.

Définition
Soit A et B deux ensembles.

A ∪B = A ∩B =

On dit que A et B sont disjoints lorsque

l’union de A et B est alors notée

Définition
Soit A et B deux ensembles.

A×B =
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Exemple : {a; b; c} × {1; 2} =

On peut représenter cet ensemble graphiquement :

Remarque : on a déjà vu en début d’année que l’union, l’intersection et le produit cartésien se généralisent
sans difficulté à n ≥ 2 ensembles (par récurrence).

Définition
Soit Ω un ensemble.

• On dit que l’ensemble A est une partie de Ω lorsque ∀x ∈ A, x ∈ Ω. On note alors A ⊂ Ω.

• Si A est une partie de Ω, la partie complémentaire de A dans Ω est

On la note A ou ∁ΩA (lorsqu’on veut préciser complémentaire « dans quoi »).

• L’ensemble des parties de Ω est noté P(Ω).

Exercice
Énumérer P(∅), P({a}), P({a; b}) et P({a; b; c}).

Réponse
On a :

— P(∅) =

— P({a}) =

— P({a; b}) =

— P({a; b; c}) =

1.2 Propriétés du cardinal d’un ensemble fini

Proposition
Soit E et F deux ensembles finis.

• Il existe une injection E → F si, et seulement si,

• Il existe une E → F si, et seulement si,

• Il existe une E → F si, et seulement si,

Démonstration
On se limite au dernier cas :
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En conséquence :

Proposition
Soit Ω un ensemble fini, A une partie de Ω.

On a |A| ≤ |Ω| avec égalité si, et seulement si, A = Ω.

Proposition (Cardinal d’une union, d’un produit)
Soit A,B deux ensembles finis.

• Si A et B sont disjoints on a |A ⊔B| =

• Cas général : |A ∪B| =

• |A×B| =

Démonstration
On se limite au dernier cas.

Théorème
Soit Ω un ensemble fini, soit n ∈ N son cardinal. On a : |P(Ω)| = 2n.

Démonstration
On fournit deux démonstrations pour ce résultat.

1) Par récurrence sur n. On a déjà vu en exercice que |P(∅)| = 1 = 20, la propriété est donc initialisée
pour n = 0.

Supposons que les ensembles ayant n éléments aient 2n parties. Soit Ω, un ensemble à n+1 élément et
soit a ∈ Ω. Les parties de Ω sont de deux sortes :

— celles qui ne continennent pas a, ce sont donc des parties de Ω\{a} qui est un ensemble à n élément,
il y en a donc 2n.

— celles qui contiennent a et qui sont de la forme {a} ⊔A avec A une partie de Ω\{a}. Là encore, il y
en a 2n.

Finalement, il y a donc 2n + 2n = 2n+1 parties de Ω et la propriété est héréditaire.

La propriété étant initialisée pour n = 0 et héréditaire, on en conclut qu’elle est vraie pour tour entier
naturel n.

2) Notons Ω = {x1; . . . xn}.
Soit l’application ϕ : P(Ω) → {Vrai;Faux}n définie pour A ∈ P(Ω) par ϕ(A) = (x1 ∈ A ; . . . ; xn ∈ A).

ϕ est clairement injective et surjective, c’est donc une bijection et on a : |P(Ω)| = |{Vrai;Faux}n| = 2n.
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Proposition (Nombre d’applications entre deux ensembles finis)
Soit A, B deux ensembles finis et non vides, on note n = |A| et p = |B|.

Il y a applications de A dans B.

Remarques :
a) L’ensemble des applications de A dans B est noté BA. On a donc |BA| =
b) La démonstration de ce résultat figure sur la fiche d’exercices.

1.3 Listes, arrangements, permutations et combinaisons

Proposition
Soit E et F deux ensembles finis, soit p = |E| et n = |F |.

Si p ≤ n, il y a
n!

(n− p)!
injections E → F . Sinon, il n’y en a pas.

Démonstration
Si p > n, on a déjà vu qu’il n’y a pas d’injections E → F .
Supposons à présent p ≤ n et notons E = {e1; . . . ; ep} et F = {f1; . . . ; fn}.
Pour construire, une injection ϕ : E → F il faut :

— Choisir ϕ(e1) parmi f1, . . . , fn : il y a n choix possibles.
— Choisir ϕ(e2) parmi les éléments de F mais, comme ϕ est injective, ϕ(e2) ̸= ϕ(e1). Il y a donc n − 1

choix possibles.
— On continue comme cela jusqu’à choisir ϕ(ep) parmi les n− (p− 1) éléments de F qui n’ont pas déjà

été pris comme image. Il y a donc n− p+ 1 choix possibles.
Finalement, on a n× (n− 1)× · · · × (n− p+ 1) = n!

(n−p)! façons de construire une injection E → F . ■

Définition
Soit E un ensemble fini, soit n = |E| et p > 0 un entier. On appelle :

• p-listes d’éléments de E les éléments de Ep.

• arrangements de p éléments de E les p-listes d’éléments de E sans répétition.

• permutations de E les arrangements de n éléments de E.

Exemple : on organise des courses entre dix coureurs qui portent des dossards numérotés de 1 à 10.
On suppose qu’il n’y a pas d’ex aequo possible.

— Pour chaque course, le podium est un arrangement de trois éléments de [[1; 10]].

— Pour chaque course, l’arrivée complète est une permutation de [[1; 10]].

— Si on fait cinq courses successives et qu’on fait la liste des vainqueurs on obtient une 5−liste de [[1; 10]].
(Des répétitions sont possibles).

Proposition
Soit E un ensemble fini et non-vide, soit n = |E| et p ∈ [[1;n]].

i. Il y a np p-listes d’éléments de E.

ii. Il y a
n!

(n− p)!
arrangements de E à p éléments.

iii. Il y a n! permutations de E.

Démonstration
Il y a |Ep| p-listes d’éléments de E et on sait que |Ep| = |E|p.
Un arrangement de p éléments de E est p-liste sans répétition, cela correspond à une injection [[1;n]] → E, il
y en a n!

(n−p)! .

Les permutations sont des cas particuliers d’arrangements avec p = n. ■
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Définition
Soit E un ensemble fini et non-vide, soit n = |E| et p ∈ [[1;n]].
Une combinaison de p éléments de E est une partie de E à p éléments.

Exercice
Donner toutes les combinaisons à 2 éléments de [[1; 4]].

Réponse
On a :

Théorème (Nombre de combinaisons)
Il y a

(
n
p

)
= n!

p!(n−p)! parties à p éléments d’un ensemble qui en comporte n.

Démonstration
Soit X le nombre de combinaisons à p éléments de E. Le nombre de p-arrangements de E est X × p!. ■

Proposition (Valeurs remarquables des coefficients binomiaux)
Soit n ∈ N. On a :(

n

0

)
=

(
n

n

)
= 1 ;

(
n

1

)
=

(
n

n− 1

)
= n ; ∀p ∈ [[0;n]],

(
n

p

)
=

(
n

n− p

)

Démonstration
Uniquement pour la dernière : choisir une partie A à p éléments de E revient à choisir son complémentaire,
c’est-à-dire une partie à n− p éléments de E. ■

Proposition (Formule de Pascal)
Soit n ∈ N∗ et p ∈ [[1;n]]. On a : (

n

p

)
+

(
n

p− 1

)
=

(
n+ 1

p

)

Démonstration
Soit n ∈ N et p ∈ [[1;n]].

(
n+1
p

)
est le nombre de parties à p éléments d’un ensemble qui en contient n + 1,

mettons [[1;n+ 1]]. Ses parties à p éléments sont de deux types :
— celles qui ne continennent pas n+ 1, ce sont des parties de [[1;n]] à p éléments, il y en a

(
n
p

)
.

— celles qui contiennent n+ 1. Elles sont de la forme {n+ 1} ⊔A avec |A| = p− 1 et A ⊂ [[1;n]]. Il y en
a
(

n
p−1

)
.

Finalement, il y a bien
(
n
p

)
+
(

n
p−1

)
parties à p éléments de [[1;n+ 1]].

Méthode (liste, arrangement ou combinaison ?)
Dans les exercices, cette question est souvent délicate. On peut procéder ainsi :

Mise en œuvre : exercices 1, 2 et 6
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2 Cadre théorique des probabilités

2.1 Expérience aléatoire, univers et événements

Définition
• Une expérience aléatoire est une épreuve dont on connaît les résultats possibles (ou issues), sans

savoir lequel va se réaliser.

• L’univers associé à une expérience aléatoire est l’ensemble de ses issues.
On le note souvent Ω.

Exemples : Les deux premières situations seront reprises plusieurs fois dans la suite, avec les mêmes notations.
1. On joue à pile ou face. L’univers est Ω1 = {Pile,Face}.
2. On lance un dé (normal : cubique, faces numérotées de 1 à 6) et on note le résultat obtenu. L’univers est

Ω2 = [[1, 6]].
3. On compte le nombre de fois qu’il faut lancer un dé pour obtenir un 6 pour la première fois. L’univers est

Ω3 = N∗.

Définition
Soit Ω un univers.

• Un événement est une partie de Ω. L’ensemble des événements est donc P(Ω).

• Parmi les événements, il y en a deux qui sont singuliers :
— le plus petit événement : ∅ est appelé événement impossible ;
— le plus grand événement : Ω est appelé événement certain.

• Soit A un événement. Si |A| = 1, c’est-à-dire si A est constitué d’une seule issue, on dit que A est un
événement élémentaire, ou encore que c’est un singleton.

Remarques :
1. Lors de la réalisation de l’expérience aléatoire, une issue (et une seule) se produit. Les événements sont

alors réalisés ou pas. Par exemple, on lance un dé et on obtient un 5. L’événement « le résultat est pair »
ne s’est pas réalisé, contrairement à l’événement « le résultat est supérieur à 4 ».
Ceci justifie les dénominations de ∅ et Ω : ∅ ne sera jamais réalisé alors que Ω le sera toujours.

2. Lorsqu’on écrit que l’événement impossible est le « plus petit événement », ou que l’événement certain est
le « plus grand », c’est par rapport à l’inclusion.
En effet, toute partie A de Ω vérifie ∅ ⊂ A ⊂ Ω.
⊂ est une relation d’ordre partielle sur P(Ω) : tous les ensembles ne se comparent pas selon ⊂.
Par exemple : A = {1, 2} et B = {1, 3} sont deux parties de Ω2 mais on n’a ni A ⊂ B ni B ⊂ A.

Exemples :
1. Listons tous les événements de Ω1 = {Pile,Face} :

P(Ω1) = {∅, {Pile}, {Face},Ω1}

2. Considérons le lancé de dé dont l’univers est déjà connu : Ω2.
« le résultat est pair » est un événement de Ω2. En effet, c’est {2, 4, 6} ⊂ Ω2.

Remarques :
1. On a vu dans la partie Dénombrement de ce chapitre que, si |Ω| = n ∈ N alors |P(Ω)| = 2n.

2. Lorsqu’on étudie une expérience aléatoire et que l’on crée un univers Ω, on fait une modélisation. Sur les
exemples précédents, les univers choisis étaient naturels par rapport aux situations étudiées mais ce n’est
pas nécessairement le cas. Prenons par exemple comme expérience aléatoire une course de huit chevaux.
Un événement est un ordre d’arrivée pour les huit chevaux, par exemple (1, 4, 2, 6, 5, 8, 3, 7) et donc on
peut considérer comme univers Ω1 qui est l’ensemble des 8-uplets d’éléments distincts de [[1, 8]]. Mais si on
s’intéresse au tiercé uniquement, on peut considérer qu’une issue est l’ordre d’arrivée des trois premiers
chevaux uniquement (que le cheval 7 soit arrivé dernier ou quatrième ne change rien au tiercé). L’univers
Ω2 est alors l’ensemble des triplets sans répétitions de [[1, 8]].
Il n’y a pas a priori de bon ou de mauvais choix, l’important est de bien comprendre l’expérience aléatoire
pour que la modélisation retenue soit cohérente.
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2.2 Opérations sur les événements

Définition
Soit Ω un univers et A ⊂ Ω un événement.
L’événement contraire de A est l’événement ∁ΩA = Ω\A. On le note A.

Exemple : Dans le lancer de dé, on considère l’événement A = {1, 3}. On a A = {2, 4, 5, 6}.

Proposition
Soit Ω un univers, A ⊂ Ω un événement. On a : A = A ; Ω = ∅ et ∅ = Ω.

Définition
Soit Ω un univers, A et B deux événements. On appelle :

« A ou B » l’événement A ∪B « A et B » l’événement A ∩B.

Exemple : Dans une classe de PC de 35 élèves, on a les résultats suivants aux épreuves écrites des concours
CCS et CCINP :

admissibles CCS non-admissibles CCS
admissibles CCINP 10 12
non-admissibles CCINP 2 11

On peut également représenter la situation avec un diagramme ensembliste :

Sur la figure précédente, le plus grand ensemble est la classe et les zones colorées représentent les admissibles
aux concours.

On peut alors se poser plusieurs questions :
— Combien d’élèves sont admissibles aux deux concours ?

Sur le diagramme cela correspond à CCINP ∩ CCS, dans le tableau on a un effectif de 10 élèves.

— Combien d’élèves ne sont admissibles à aucun concours ?
Sur le diagramme cela correspond à la zone qui n’est pas colorée, dans le tableau on a un effectif de 11
élèves.

— Combien d’élèves sont admissibles à un unique concours ?
Sur le diagramme cela correspond aux zones « rose et non bleue » d’une part, « bleue et non rose » d’autre
part. Dans le tableau, on a un effectif de 12 + 2 = 14 élèves.

Notez que pour répondre à cette dernière question, il suffisait de considérer qu’un élève est forcément dans une
et une seule de ces trois situations : admissible aux deux concours, à aucun ou bien à un seul. Dès lors, il y a
35− (10 + 11) = 14 élèves admissibles à un seul concours.

Remarque : il ne faut pas hésiter à changer de mode de représentation pour bien comprendre la situation
étudiée. On peut se contenter du tableau, enrichir le diagramme en rajoutant les effectifs, ou encore faire un
arbre, si besoin.

Définition
On dit que A et B sont incompatibles lorsque A et B ne peuvent pas se produire simultanément, autrement
dit lorsque A ∩B = ∅.
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Définition
Soit (A1, . . . , Ar) une famille d’événements.
On dit que cette famille est un système complet d’événements lorsque les deux conditions suivantes sont
vérifiées :

— les événements sont deux-à-deux incompatibles : ∀(i, j) ∈ [[1, r]]2, i ̸= j =⇒ Ai ∩Aj = ∅ ;

— l’union de tous les événements est Ω :
r⋃

i=1

Ai = Ω.

Exemple :
1. On lance un dé, l’univers est Ω2. Soient les événements :

A : « le résultat est pair » B : « le résultat est 1 ou 5 »
C : « le résultat est 3 » D : « le résultat est multiple de 3 »

— (A,B,C) est un système complet d’événements de Ω2.

— (A,B,D) n’est pas un système complet d’événements de Ω2.
En effet, A ∩D = {6} ≠ ∅.

2. La figure ci-dessous illustre la notion de système complet d’événements :

Remarque : Si A est un événement de Ω, (A,A) est un système complet d’événements de Ω.

2.3 Probabilités sur un univers fini
Notation : Ω désigne un univers fini de cardinal n ∈ N∗, on note ω1, . . . , ωn ses éléments.

Définition
Une probabilité sur Ω est une application P : P(Ω) → [0, 1] qui vérifie :

i. P(Ω) = 1 ;

ii. si A et B sont des événements incompatibles alors P(A ∪B) = P(A) + P(B).

On dit que (Ω,P) est un espace probabilisé.

Exemple :
Dans le jeu de pile ou face, on peut définir plusieurs probabilités sur Ω1 :

— P1 telle que P1({Pile}) = 0, 5, P1({Face}) = 0, 5, P1(Ω) = 1 et P1(∅) = 0.
P1 correspond à une pièce équilibrée.

— P2 telle que P2({Pile}) = 0, 2, P2({Face}) = 0, 8, P2(Ω) = 1 et P1(∅) = 0.
P2 correspond à une pièce truquée.

Remarque : Dans l’exemple précédent, on a détaillé toutes les images des éléments de P(Ω) par P.
On a toujours P(Ω) = 1, P(∅) = 0 et si P({Pile}) = p ∈ [0, 1] alors P({Face}) = 1− p.
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Proposition
Soit (Ω,P) un espace probabilisé. Soit A et B deux événements. On a :
1) P(∅) = 0.
2) P(A) = 1− P(A).
3) Si A ⊂ B alors P(A) ⩽ P(B).
4) P(A ∪B) = P(A) + P(B)− P(A ∩B).

Remarque : si A ⊂ B alors P(A) ⩽ P(B), c’est la croissance de la probabilité. Notez que :
• P n’est pas une fonction (car son domaine de départ n’est pas une partie de R), donc cette forme de

croissance n’est pas la même que celle vue sur les fonctions réelles ;

• on peut avoir A strictement plus petit que B et néanmoins P(A) = P(B) (cela arrive quand P(B\A) = 0).

Proposition
Une probabilité P sur Ω est complètement définie dès que l’on connaît le tableau de probabilité :

ω1 ω2 . . . ωn

P({ω1}) P({ω2}) . . . P({ωn})

La probabilité d’un événement A est alors la somme des probabilités des issues qui le composent :

P(A) =
∑

i tel que ωi∈A

P(ωi) .

Méthode (Pour définir une probabilité sur un univers fini)
Il suffit de compléter le tableau :

Issues ω1 . . . ωn TOTAL
Probabilités associées p1 . . . pn 1

où (p1, . . . , pn) est une famille de réels positifs dont la somme vaut 1.

Mise en œuvre : exercice 12.

Remarque : Dans le tableau, la colonne « Total » est facultative, son but est de ne pas oublier que la somme
des probabilités des issues doit valoir 1.

Exemple : On considère le lancé de dé dont l’univers est Ω2 = [[1, 6]].
Soit l’événement A : « Obtenir un résultat pair ».

Voici deux lois de probabilités sur Ω2 :
— probabilité P1 :

Résultat du dé 1 2 3 4 5 6 Total
Probabilité correspondante 1

6
1
6

1
6

1
6

1
6

1
6 1

P1 correspond à un dé équilibré, on a :

P1(A) = P1({2, 4, 6}) = P1({2}) + P1({4}) + P1({6}) = 3× 1

6
=

1

2
.

— probabilité P2 :

Résultat du dé 1 2 3 4 5 6 Total
Probabilité correspondante 1

2
1
10

1
10

1
10

1
10

1
10 1

P2 correspond à un dé truqué (qui favorise le résultat 1), on a :

P2(A) = P2({2, 4, 6}) = P2({2}) + P2({4}) + P2({6}) = 3× 1

10
=

3

10
.
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Définition
On dit qu’il y a équiprobabilité sur (Ω,P) lorsque :

P({ω1}) = P({ω2}) = · · · = P({ωn}) =
1

n
.

Remarque : l’équiprobabilité correspond aux situations « équitables ». On y reviendra dans le chapitre dédié
aux variables aléatoires.

Vocabulaire : Lorsqu’on a équiprobabilité, on dit aussi que la probabilité sur Ω est uniforme.

Proposition
Si on a équiprobabilité sur l’univers fini Ω, tout événement A a pour probabilité P(A) =

|A|
|Ω|

.

Exemple : On lance successivement deux dés équilibrés. Quelle est la probabilité que la somme des résultats
obtenus soit 6 ?

L’univers est Ω = [[1, 6]]2 dont le cardinal est 36.
Puisque les dés sont équilibrés, il y a équiprobabilité sur Ω. L’événement A : « la somme des résultats est 6 »
correspond aux couples : (1, 5), (2, 4), (3, 3), (4, 2), (5, 1) et donc P(A) = 5

36 .

3 Conditionnement et indépendance
Notation : Dans ce paragraphe, Ω désigne un univers fini et P une probabilité sur Ω.

3.1 Probabilité conditionnelle
Exemple : Imaginons que l’on soit au téléphone avec un ami. Il lance un dé équilibré et on s’intéresse au
résultat obtenu. On considère les événements :

— A : « le résultat du dé est 4 » ;

— B : « le résultat du dé est 3 » ;

— C : « le résultat du dé est pair ».
On a P(A) = P(B) = 1

6 et P(C) = 1
2 .

Si l’ami nous informe que l’événement C s’est réalisé mais sans nous donner le résultat de l’expérience, on a
une évolution des probabilités : l’événement B ne peut pas s’être produit et la probabilité que A se soit produit
devient 1

3 .

On parle alors de probabilités « sachant (la réalisation de) C ».

Définition
Soient A et B deux événements avec P(A) > 0.

On appelle probabilité conditionnelle de B sachant A le réel PA(B) =
P(A ∩B)

P(A)
.

On le note également P(B|A).

Remarque : Pour qu’une probabilité « sachant A » existe il faut que la probabilité de A soit non nulle ; cette
condition d’existence apparaîtra dans tous les énoncés.

Exemple : On considère une population sur laquelle on s’intéresse à la prévalence de la grippe (c’est-à-dire
le taux de malades) selon que les individus aient été vaccinés ou pas. On sait que 40 % de la population a
été vaccinée, que parmi les personnes vaccinées seules 5 % contractent la grippe alors que parmi les personnes
non-vaccinées cette proportion est de 30 %.

On choisit une personne au hasard dans cette population, soient les événements :
— V : « l’individu est vacciné » ;

— G : « l’individu est grippé ».
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On illustre la situation à l’aide d’un arbre de probabilités :

Dans la suite de ce paragraphe nous allons voir des formules qui permettront de répondre à deux questions :

1. Quelle est la probabilité de G ?

2. Un individu étant malade, quelle est la probabilité qu’il ait été vacciné ?

Proposition
Si A est un événement de probabilité non nulle alors PA est une probabilité sur Ω.

Remarque : Une conséquence de la propriété précédente a déjà été utilisée lors de la construction de l’arbre de
probabilité de l’exemple. En effet, la phrase « parmi les personnes vaccinées seules 5 % contractent la grippe »
se traduit par PV (G) = 0, 05 et on a utilisé que PV est une probabilité :

PV (G) = 1− PV (G) = 1− 0, 05 = 0, 95.

De même, PV (G) = 1− PV (G) = 1− 0, 3 = 0, 7.

Proposition (Formule des probabilités composées)
Si A et B sont des événements de probabilités non-nulles on a :

P(A ∩B) = PA(B)× P(A) = PB(A)× P(B) .

Remarque : si on travaille avec un arbre de probabilités, la formule des probabilités composées se reformule
ainsi : « la probabilité d’un chemin est le produit des probabilités des branches qui le composent ».

Ainsi, sur l’exemple précédent, P(V ∩G) = P(V )× PV (G) = 0, 4× 0, 05 = 0, 02.

Proposition (Formule des probabilités totales)
Soit A1, . . . , Ar un système complet d’événements, dont chaque événement a une probabilité non nulle.

Soit B un événement. On a :

P(B) =

n∑
i=1

P(Ai ∩B) =

n∑
i=1

PAi
(B)× P(Ai) .

Remarque : Justification de la formule des probabilités totales.
Illustrons la formule des probabilités totales à l’aide d’un diagramme ensembliste :
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— B est découpé en une union disjointe, grâce au système complet A1, . . . , Ar :

B = (B ∩A1) ⊔ · · · ⊔ (B ∩Ar).

— On a donc P(B) =

r∑
i=1

P(Ai ∩B).

— Puisque P(Ai) > 0 pour tout i ∈ [[1, r]], on applique la formule des probabilités composées :

∀i ∈ [[1, r]], P(Ai ∩B) = PAi
(B)× P(Ai)

— On a donc P(B) =

n∑
i=1

P(Ai ∩B) =

n∑
i=1

PAi
(B)× P(Ai).

Proposition (Formules de Bayes)
i. Si A et B sont deux événements tels que P(A) > 0 et P(B) > 0 alors :

PB(A) =
PA(B)P(A)

P(B)
.

ii. Soit A1, . . . , Ar un système complet d’événements, dont chaque événement a une probabilité non nulle.
Soit B un événement de probabilité non nulle. On a alors, pour tout j ∈ [[1, r]] :

PB(Aj) =
PAj

(B)P(Aj)∑r
i=1 PAi(B)P(Ai)

.

Démonstration
On se limite à la première formule de Bayes, la seconde sera proposée dans la fiche de TD.

Puisque P(A) > 0 et P(B) > 0 les probabilités conditionnelles PA(B) et PB(A) existent.

Par définition, on a : PB(A) =
P(A ∩B)

P(B)
. Or, d’après la formule des probabilités composées P(A ∩ B) =

PA(B)× P(A), d’où le résultat. ■

Exemple : Reprenons l’étude de la prévalence de la grippe et de sa couverture vaccinale.

Déterminons P(G) puis PG(V ).
— (V, V ) est un système complet d’événements de l’univers (avec P(V ) > 0 et P(V ) > 0), on peut donc

appliquer la formule des probabilités totales :

P(G) = P(G ∩ V ) + P(G ∩ V ) = PV (G)P(V ) + PV (G)P(V ) .

— Toutes les probabilités de la formule apparaissent dans l’arbre. On a donc :

P(G) = 0, 05× 0, 4 + 0, 3× 0, 6 = 0, 2 .

— On cherche enfin PG(V ), on utilise la formule de Bayes :

PG(V ) =
PV (G)P(V )

P(G)
=

0, 05× 0, 4

0, 2
= 0, 1 .

Méthode ( Comment aborder un exercice sur les probabilités conditionnelles ?)
1. Les exercices faisant intervenir les probabilités conditionnelles présentent toujours deux systèmes

complets d’événements de l’univers. Prenons, par exemple, des systèmes de trois et deux événements :
(A1, A2, A3) et (B,B). On peut alors construire deux arbres de probabilités, selon qu’on considère en
premier l’alternative entre A1, A2 et A3 ou celle entre B et B :

2. Une lecture attentive de l’énoncé permet d’en extraire les probabilités de certaines branches des
deux arbres. (Attention, il faut bien identifier les probabilités conditionnelles et ne pas confondre
conditionnement et intersection).

3. À l’aide des formules des probabilités totales et de Bayes il faut compléter les deux arbres pour
répondre aux questions posées ; l’objectif est souvent de passer d’un arbre à l’autre.

Mise en œuvre : exercices 11 et 14.
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3.2 Événements indépendants

Définition
Soient A et B deux événements.
On dit que A et B sont indépendants lorsque P(A ∩B) = P(A)× P(B).

Proposition
Soient A et B deux événements avec P(B) ̸= 0.
A et B sont indépendants si, et seulement si, PB(A) = P(A).

Remarque : Cette propriété permet de faire le lien avec le concept intuitif d’indépendance : A et B sont
indépendants lorsque la réalisation de B n’influe pas sur le pronostic de l’événement A.
Attention néanmoins : l’intuition ne donne pas systématiquement le bon résultat !

Exemple : On lance un dé équilibré et on considère les événements suivants :
— A = « obtenir un résultat pair » ;
— B = « obtenir un résultat multiple de 3 » ;
— C = « obtenir un résultat supérieur ou égal à 4 ».

On a P(A) =
1

2
, P(B) =

1

3
et P(C) =

1

2
.

P(A ∩B) = P({6}) = 1

6
= P(A)× P(B) donc A et B sont indépendants.

Par contre, P(A ∩ C) = P({4, 6}) = 1

3
̸= P(A)× P(C) donc A et C ne sont pas indépendants.

Définition
Soit r ∈ N∗ et A1, . . . Ar une famille d’événements.
On dit que (Ai)i∈[[1,r]] sont mutuellement indépendants lorsque :

∀J ⊂ [[1, r]], P

(⋂
i∈J

Ai

)
=
∏
i∈J

P(Ai) .

Remarques : On reprend les notations de la définition : J est une partie de [[1, r]].
1. Il y a 2r parties de [[1, r]] dont 2r − (r + 1) comportent au moins deux éléments. Il y a donc 2r − (r + 1)

égalités à tester pour vérifier si (Ai)i∈[[1,r]] est une famille d’événements mutuellement indépendants.
2. Les événements de la famille (Ai)i∈[[1,r]] sont deux-à-deux indépendants lorsque i ̸= j ⇒ P(Ai ∩ Aj) =

P(Ai)× P(Aj). Il y a donc
(
r
2

)
égalités à tester.

3. En choisissant J = {i, j} ⊂ [[1, r]] (avec i ̸= j) on a P(Ai ∩ Aj) = P(Ai)× P(Aj) c’est-à-dire que Ai et Aj

sont indépendants.
L’indépendance mutuelle d’une famille d’événements implique donc leur indépendance deux-à-deux. La
réciproque est fausse, comme l’illustre l’exemple ci-dessous.

Exemple : On lance deux fois de suite un dé équilibré. On considère les événements suivants :
— A = « le premier lancé a un résultat pair » ;
— B = « le second lancé a un résultat pair » ;
— C = « la somme des deux résultats est impaire ».

On a P(A) = P(B) = P(C) =
1

2
. P(A ∩B) =

1

4
donc A et B sont indépendants, il en va de même pour A et C

ainsi que pour B et C.
Par contre, P(A ∩B ∩ C) = 0 ̸= P(A)P(B)P(C) donc A, B et C ne sont pas mutuellement indépendants.
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