

Exercice 1

On considère l'endomorphisme f de $\mathbb{R}_3[X]$, dont la matrice dans la base canonique $(1,X,X^2,X^3)$ est

$$M = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

- 1. Quel est le rang de M? En déduire la dimension de H = Ker(f).
- 2. Où lit-on que $f(X^2) = X^2 + X^3$? Déterminer f(1) et $f(X^3)$.
- 3. Déterminer une base de Im(f) = G.
- 4. La somme H+G est-elle directe? Si oui, H et G sont-ils supplémentaires dans $\mathbb{R}_3[X]$?

Problème 1

Partie A

1. A quelle condition nécessaire et suffisante portant sur son déterminant, une matrice $A\in\mathfrak{M}_2(\mathbb{R})$ est-elle inversible ?

Exprimer alors $\det (A^{-1})$ en fonction de $\det (A)$.

2. Déterminer les inverses des matrices

$$A_1 = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$$
 ; $A_2 = \begin{pmatrix} 4 & 7 \\ 3 & 5 \end{pmatrix}$; $A_3 = \begin{pmatrix} 4 & 6 \\ 3 & 5 \end{pmatrix}$;

3. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathfrak{M}_2(\mathbb{Z})$; $(a, b, c, d) \in \mathbb{Z}^4$.

Montrer que A admet une matrice inverse A^{-1} et que A^{-1} est, elle aussi,un élément de $\mathfrak{M}_2(\mathbb{Z})$ si et seulement si $\det(A) \in \{-1,1\}$.

Justifier alors que $A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$

On notera désormais $\mathcal{SL}_2(\mathbb{Z})$ le sous-ensemble de $\mathfrak{M}_2(\mathbb{Z})$, constitué des matrices telles que $\det(M)=1$.

4. Déterminer les couples $(b,c)\in\mathbb{Z}^2$ tels que $A_4=\begin{pmatrix} 5 & b \\ c & 1 \end{pmatrix}\in\mathcal{SL}_2(\mathbb{Z}).$

Partie B

On désignera par $\mathcal{C}_2(\mathbb{Z})$ l'ensemble des matrices A de $\mathfrak{M}_2(\mathbb{Z})$ telles qu'il existe un entier naturel p, non nul, vérifiant $A^p = I_2$.

Pour chaque matrice A de $\mathcal{C}_2(\mathbb{Z})$, on remarque que l'ensemble des entiers naturels non nuls k tels que $A^k=I_2$ est une partie de \mathbb{N}^* non vide, donc admet un plus petit élément q non nul tel que $A^q=I_2$; il sera appelé ordre de la matrice A et noté h(A)=q.

Soit $A=egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathcal{C}_2(\mathbb{Z})$, d'ordre h(A)=q.

- 1. Montrer que A admet une matrice inverse A^{-1} appartenant à $\mathfrak{M}_2(\mathbb{Z})$, En déduire les valeurs possibles de $\det(A)$.
- 2. Vérifier que $A^{-1} \in \mathcal{C}_2(\mathbb{Z})$. Comparer h(A) et $h(A^{-1})$.

La suite n'est accessible qu'aux 5/2 (chapitre sur la réduction)

- 3. On notera λ_1 et λ_2 les valeurs propres complexes, éventuellement confondues, de A. Montrer qu'elles sont de module 1.
- 4. Exprimer en fonction de λ_1 et λ_2 la trace $\operatorname{Tr}(A)$ de la matrice A.
- 5. En déduire que $\operatorname{tr} A \in \{-2, -1, 0, 1, 2\}$.

pour le vendredi 25 septembre 2020

- 6. Montrer que les matrices $C=\begin{pmatrix} 2 & -3 \\ 1 & -2 \end{pmatrix}$ et $D=\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ appartiennent à $\mathcal{C}_2(\mathbb{Z})$ et déterminer leurs ordres. La matrice produit CD appartient-elle à $\mathcal{C}_2(\mathbb{Z})$?
- 7. Exprimer le polynôme caractéristique χ_A de A à l'aide de $\operatorname{tr} A$ et $\det A$.
- 8. Vérifier alors qu'il y a 10 polynômes caractéristiques possibles; en utilisant la question B.3, vous excluerez 4 de ces cas.
- 9. Dans les 6 cas restants, montrer que A est diagonalisable dans $\mathbb C$ et déterminer l'ordre de A.
- 10. En déduire l'existence et la valeur du plus petit entier naturel p_2 tel que :

$$\forall A \in \mathcal{C}_2(\mathbb{Z}), \ A^{p_2} = I_2$$

Devoir Maison n° 2 2/2