

Exercice 1

Soit a>0, on considère les fonctions f_a définies sur \mathbb{R}_+^* par :

$$\forall x \in \mathbb{R}_+^*, \ f_a(x) = \frac{\sin(\pi x)}{x^a}.$$

On note I_a et J_a les intégrales généralisées : $I_a = \int_0^1 f_a(t) dt$ et $J_a = \int_1^{+\infty} f_a(t) dt$.

- 1. Montrer que I_a converge pour a < 2. Qu'en est-il pour $a \ge 2$?
- 2. Soit a>1, montrer que $\int_{1}^{+\infty} |f_a(t)| dt$ converge.
- 3 (a) Soit X>1, montrer que :

$$\int_{1}^{X} f_{a}(t) dt = \frac{-1}{\pi} - \frac{\cos(\pi X)}{\pi X^{a}} - \frac{a}{\pi} \int_{1}^{X} \frac{\cos(\pi t)}{t^{a+1}} dt$$

- (b) En déduire la nature de J_a lorsque $a \in]0,1]$.
- 4. Pour quelles valeurs de a l'intégrale $\int_{0}^{+\infty} f_a(t) dt$ est-elle convergente?

Exercice 2

On pause, pour tout entier $n \in \mathbb{N}^*$, $u_n = \frac{\ln(n+1)}{n+1}$.

- 1. Quelle est la nature de la série $\sum_{n\geq 1} nu_n$?
- 2. Quelle est la nature de la série $\sum u_n$?
- 3. Quelle est la nature de la série $\sum_{n\geq 1} \frac{1}{n} u_n$?