

Problème 1 étude de séries de fonctions

- 1. Un premier exemple.
- **1.1.** Pour tout $x \in]-1,1[$, calculer $F(x)=\sum_{n=1}^{+\infty}x^n$ ainsi que F'(x).
- **1.2.** Déterminer $\lim_{\substack{x<1\\x\to 1}} F(x)$, $\lim_{\substack{x<1\\x\to 1}} (1-x)F(x)$, $\lim_{\substack{x<1\\x\to 1}} (1-x)F'(x)$ et $\lim_{\substack{x<1\\x\to 1}} (1-x)^2 F'(x)$.
- 2. Un deuxième exemple.

Dans cette question, pour tout $x \in]-1,1[$, on pose cette fois : $F(x) = \sum_{n=1}^{+\infty} \frac{x^n}{1-x^n}$.

- **2.1.** Soit $a \in]0,1[$. Prouver la convergence normale de cette série de fonctions sur le segment [-a,a]. En déduire que F est définie et continue sur]-1,1[.
- **2.2.** On admet que : $\forall x \in]-1,1[,\,-\ln(1-x)=\sum_{n=1}^{+\infty}\frac{x^n}{n}.$

Montrer que, pour tout $x\in]0,1[$ et tout $n\in \mathbb{N}^*$, on a $\frac{1-x^n}{1-x}\leqslant n.$

En déduire $\lim_{x<1\atop x\to 1}F(x)$ et $\lim_{x<1\atop x\to 1}(1-x)F(x)$

indication: On pourra montrer que $F(x) \ge \frac{1}{1-x} \sum_{n=1}^{+\infty} \frac{x^n}{n}$, pour tout $x \in]0,1[$.

3. Dans cette question, f est une application réelle continue et croissante sur [0,1[avec f(0)=0 et telle que $u\mapsto \frac{f(u)}{u}$ soit intégrable sur]0,1[.

Soit $x \in]0,1[$.

- **3.1.** Justifier l'existence de $G(x) = \int_0^{+\infty} f(x^t) dt$ et l'égalité $G(x) = -\frac{1}{\ln(x)} \int_0^1 \frac{f(u)}{u} du$.
- **3.2.** Pour tout $n \in \mathbb{N}^*$, justifier l'encadrement

$$\int_{n}^{n+1} f(x^{t}) dt \leqslant f(x^{n}) \leqslant \int_{n-1}^{n} f(x^{t}) dt.$$

- 3.3. En déduire l'existence de $F(x)=\sum_{n=1}^{+\infty}f(x^n)$, ainsi qu'un encadrement de F(x) par deux intégrales dépendant de x.
 - **3.4.** Conclure avec soin que $\lim_{\substack{x<1\\x\to 1}} (1-x)F(x) = \int_0^1 \frac{f(u)}{u} du$.
 - 4. Un dernier exemple.

Pour tout $x \in]-1,1[$, on pose enfin cette fois : $F(x)=-\sum_{n=1}^{+\infty}\ln(1-x^n)$.

4.1. Montrer que F est définie et de classe C^1 sur]-1,1[et exprimer sa dérivée sous la forme d'une série de fonctions.

Fin de l'énoncé