

Exercice 1

Le 23 décembre, deux lutins du père Noël, Tic et Tac produisent des chevaux de bois au cours de leur journée de travail, en quantités respectives X et Y, où X et Y sont deux variables aléatoires indépendantes, à valeurs dans $\mathbb N$ et telles que :

$$\forall k \in \mathbb{N}, \ \mathbb{P}(X = k) = \mathbb{P}(Y = k) = p \ q^k$$

où $p \in]0,1[$ et q = 1 - p.

- 1. Vérifier que l'on définit ainsi des lois de probabilité \mathbb{P}_X et \mathbb{P}_Y .
- 2. Justifier que la variable aléatoire X possède une espérance et la calculer.
- 3. Calculer P(X = Y) et P(X < Y).

- 4. Déterminer la loi de la variable aléatoire S = X + Y.
- 5. Que représente (physiquement) la variable aléatoire *S* ?
- 6. Calculer $\mathbb{E}[S]$.

Exercice 2

La journée du 24 décembre, Tic et Tac décident de travailler ensemble pour terminer la production de poupées lutins.

Pour chaque poupée d'indice $i\in\mathbb{N}^*$, Tic choisit de coudre un nombre aléatoire N_i de boutons selon la loi $\mathcal{B}\left(5,\frac{1}{2}\right)$.

Puis Tac lance un dé à 6 faces et ajoute un grelot doré si N_i et le résultat du dé sont pairs, un grelot argenté sinon. On notera $G_i=1$ lorsque le grelot est doré, et $G_i=0$ sinon.

- 1. Déterminer la loi du couple (G_1, N_1) .
- 2. G_1 et N_1 sont-elles indépendantes?
- 3. Les lutins décident d'arrêter leur travail lorsque deux poupées produites à la suite possèdent un grelot doré. En supposant l'indépendance mutuelle entre les variables aléatoires $(N_i)_{i\in\mathbb{N}^*}$ et les lancers de dés, déterminer la loi du nombre T total de poupées produites.

- 4. Justifier que l'évènement : « le lutins produisent un nombre fini de poupées » est quasi-certain.
- 5. calculer $\mathbb{E}[T]$.

Exercice 3

Le sac du père Noël contient n cadeaux étiquetés de 1 à n. Pour la première cheminée visitée, il réalise 2 tirages successifs sans remise.

On note X la variable aléatoire correspondat au numéro du premier cadeau déposé, et Y celle correspondant au numéro du second cadeau déposé.

- 1. Donner la loi de X.
- 2. Donner la loi de Y.
- 3. Calculer $\mathbb{V}(X)$, $\mathbb{V}(Y)$ et $\mathbb{V}(X+Y)$.
- 4. X et Y sont-elles indépendantes?

