TD: Equations différentielles

1 Se ramener à une équation différentielle linéaire d'ordre 1

Exercice 1. 1. Équation de Bernoulli : Résoudre $x^2y' + y + y^2 = 0$ après avoir fait le changement de fonction $z = \frac{1}{y}$

- 2. Équation de Riccati : Soit l'équation différentielle $(1+x^3)y'=y^2+x^2y+2x$ sur $]-1,+\infty[$.
 - (a) Vérifier que l'application $x \mapsto x^2$ est une solution particulière.
 - (b) Terminer la résolution de l'équation différentielle.

Exercice 2. Montrer que l'équation différentielle suivante admet une unique solution sur $]0, +\infty[$:

$$x\ln(x)y' + y = x$$

Exercice 3. Résoudre en effectuant un changement d'inconnue, l'équation différentielle sur \mathbb{R}^+_*

$$x^2 + y^2 - 2xyy'' = 0$$

Exercice 4. Oral CCINP . On considère $E=\mathscr{C}(\mathbb{R},\mathbb{R}),$ ainsi que

$$\varphi: f \in E \mapsto (x \mapsto f'(x) - xf(x))$$

- 1. Montrer que φ est un endomorphisme de E.
- 2. Trouver le spectre de φ et les sous-espaces propres associés.
- 3. Déterminer $\operatorname{Ker}(\varphi^2)$.

2 Systèmes différentiels

Exercice 5. Résoudre le système différentiel (H) suivant sur $]0, +\infty[$:

$$\begin{cases} x' = \frac{1}{t}y + 1\\ y' = \frac{1}{t}x + 1 \end{cases}$$

 $indication: poser\ u = x + y, v = x - y.$

Exercice 6. Résoudre les systèmes différentielles suivants :

$$\begin{cases} x' &= x + 2y - z \\ y' &= 2x + 4y - 2z + 2e^t \\ z' &= -x - 2y + z - e^t \end{cases}$$

$$\begin{cases} x' &= x + y \\ y' &= -x - y + z \\ z' &= -2x - 2y + 2z \end{cases}$$

$$\begin{cases} x' &= x + y - 2z \\ y' &= x + 2y - 3z \\ z' &= y - z \end{cases}$$

3 Equations différentielles d'ordre 2

Exercice 7. Une équation d'Euler est une équation différentielle du type :

$$at^2y'' + bty' + cy = f(t)$$

avec a, b et c dans \mathbb{C} et f fonction continue sur \mathbb{R}

- 1. Montrer qu'effectuer le changement de variable $x = \ln |t|$ sur et sur \mathbb{R}_*^- permet de transformer une équation d'Euler en une équation différentielle linéaire d'ordre 2 à coefficients constants
- 2. Résoudre : $x^2y'' + 3xy' + 5y = 0$

Exercice 8. Soit (E) l'équation : 2x(1-x)y'' + (x-2)y' - y = 0.

- 1. Montrer que $y_0(x) = x 2$ est solution. Soit I l'intervalle [1, 2] ou $[2, +\infty[$.
- 2. Montrer qu'une application y est solution de (E) si et seulement si $x \mapsto z(x) = \frac{y(x)}{x-2}$ est solution d'une certaine équation différentielle d'ordre 2 que l'on explicitera.
- 3. On pose $\varphi(x) = -2 \frac{\sqrt{x-1}}{x-2}$.
 - (a) Montrer que φ est dérivable sur I et calculer sa dérivée?.
 - (b) Déterminer a, b et c dans \mathbb{R} tels que :

$$\frac{4-3x^2}{2x(x-1)(x-2)} = \frac{a}{x} + \frac{b}{x-1} + \frac{c}{x-2}$$

- (c) Résoudre (E) sur I.
- (d) Résoudre (E) sur $]1, +\infty[$.
- (e) Résoudre (E) sur \mathbb{R}_*^+ .

Exercice 9. Chercher les solutions DSE des équations suivantes et résoudre complètement ces équations.

- 1. $(1+t^2)y'' + 4ty' + 2y = 6t$
- 2. $(1-t^2)y'' 2ty' + 2y = 0$
- 3. t(1-t)y'' + (1-3t)y' y = 0 on appliquera aussi la méthode de Lagrange
- 4. y'' + 2ty' + 2y = 0 Quelles sont les solutions paires?

Exercice 10. On considère l'équation différentielle 4xy'' + 2y' - y = 0.

- 1. Déterminer les solutions développables en série entière.
- 2. Résoudre l'équation sur $]0, +\infty[$.
- 3. Retrouver le résultat à l'aide du changement de variable $t = \sqrt{x}$.

Exercice 11. On cherche les fonctions f dérivables sur \mathbb{R} telles que pour tout $x \in \mathbb{R}$,

$$f'(x) = f(1-x)$$

- 1. Montrer qu'une éventuelle solution est deux fois dérivable.
- 2. Déterminer une équation différentielle d'ordre 2 vérifiée par une éventuelle solution.
- 3. Déterminer l'ensemble des solutions.

Exercice 12. Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues telles que :

$$\forall x \in \mathbb{R}, f(x) = -1 - \int_0^x (2x - t)f(t) dt$$

4 Plus théorique

Exercice 13. Soit $a: \mathbb{R}^+ \to \mathbb{R}$ continue et intégrable sur \mathbb{R}^+ . Montrer que les solutions de y' - a(x)y = 0 sont bornées sur \mathbb{R}^+ .

Exercice 14. Soit a une application continue définie sur I à valeurs dans \mathbb{R} . Montrer que si $f \in \mathcal{C}^1(I,\mathbb{R})$ vérifie $\forall x \in I, f'(x) + a(x)f(x) \neq 0$ alors f s'annule au plus un fois sur I.

Exercice 15. Lemme de Gromwall

Soient f et g deux fonctions continues sur \mathbb{R}^+ et $a \in \mathbb{R}$. On suppose que

$$\forall t \in \mathbb{R}^+, g(t) \ge 0 \text{ et } f(t) \le a + \int_0^t f(u)g(u) du$$

En considérant une inéquation différentielle satisfaite par $F(x) = \int_0^x f(u)g(u) du$, montrer que, pour tout $t \in \mathbb{R}_+$

$$f(t) \le a \exp\left(\int_0^t g(u) \, \mathrm{d}u\right)$$