Chapitre 10 - Continuité - Exercices.

Exercice nº 1

VRAI ou FAUX sur l'ensemble du chapitre.

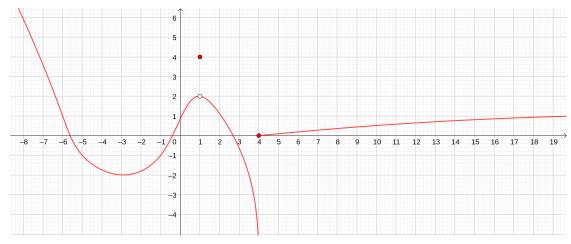
I désigne un intervalle de \mathbb{R} , a un élément ou une borne de I. f et g sont des fonctions définie sur I.

- a) Une fonction bornée admet des limites.
- b) Une fonction qui admet des limites est bornée.
- c) Une fonction continue bornée atteint ses bornes.
- d) Si f est continue sur I alors |f| aussi.
- e) Si |f| est continue sur I alors f aussi.
- f) Si $f \circ g$ est continue alors f et g sont continues.
- g) Si f est continue sur [a; b] et f(a)f(b) < 0 alors f s'annule sur [a; b].
- h) Si f est continue sur [a; b] et f(a)f(b) > 0 alors f ne s'annule pas sur [a; b].
- i) Si f(I) est un intervalle alors f est continue sur I.
- j) Une bijection continue admet une réciproque continue.

1 Applications directes du cours

Exercice nº 2

1. On considère la fonction f, définie sur \mathbb{R} et dont la courbe est représentée ci-dessous :



Lire graphiquement les limites de f en $-\infty$, -3, 1, 1^+ , 4^- , $+\infty$. Discuter la continuité de f en 1, en 4.

- 2. Déterminer $\lim_{x\to 0} (1+x)^{\frac{1}{x}}$ et $\lim_{x\to 0} (1+x)^{\frac{1}{x^2}}$ qui illustrent que « $1^{+\infty}$ » est une forme indéterminée.
- 3. La fonction $x \mapsto x^x$ peut-elle se prolonger par continuité en 0?
- 4. Prouver que $x \mapsto \sin(\frac{1}{x})$ n'a pas de limite en 0^+ .
- 5. Etudier la continuité des fonctions suivantes :

$$f(x) = \begin{cases} 0 & \text{si } x < 0 \\ \sin x & \text{si } x \ge 0 \end{cases} \qquad g(x) = \begin{cases} 1 - x & \text{si } x < 0 \\ \cos x & \text{si } x \ge 0 \end{cases} \qquad h(x) = \begin{cases} -x & \text{si } x < -1 \\ x^2 & \text{si } x \in [-1; 1] \\ 2x - 3 & \text{si } x > 1 \end{cases}$$

6. Etudier les limites en $+\infty$ de $x \longmapsto e^{ix}$ et $x \longmapsto \frac{e^{ix}}{x}$.

Exercice nº 3

Soit
$$f(x) = \frac{2x^2 - 4x - 30}{x^2 + 2x - 3}$$
.

- 1. Déterminer \mathcal{D}_f .
- 2. Discuter la continuité de f.

Exercice nº 4

- 1. Prouver que, pour tout réel k, l'équation $2x^3 3x + 2 = k$ admet des solutions.
- 2. Donner l'image de [-1;1[par les fonctions $f(x)=x^3+x$ et $g(x)=x^2-x$.
- 3. Pour les fonctions suivantes, déterminer l'image de l'intervalle I proposé.

$$f_1(x) = 4x + 1$$
, $I_1 = [-3; 7[$; $f_2(x) = x^2$, $I_2 = [1; 3[$; $f_3(x) = x^2$, $I_3 = [-4; 1[$

- 4. Trouver la plus grande valeur du réel positif a tel que $f(x) = \frac{\ln x}{x}$ réalise une bijection de]0;a]sur un intervalle à déterminer.
- 5. On reprend la question 1. : préciser le nombre de solutions en fonction de k.

2 Un peu plus dur

Exercice nº 5

Lorsqu'elles existent, déterminer les limites suivantes.

a)
$$\lim_{x \to -\infty} \frac{x^2 + 2|x|}{x}$$
 b) $\lim_{x \to 0} \frac{x^2 + 2|x|}{x}$ c) $\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2}$ d) $\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$

b)
$$\lim_{x \to 0} \frac{x^2 + 2|x|}{x}$$

c)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 3x + 2}$$

$$d) \lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$$

e)
$$\lim_{x \to 1} \frac{x-1}{x^n-1}$$
 $(n \ge 1)$

$$\text{e)} \ \lim_{x \to 1} \frac{x-1}{x^n-1} \quad (n \ge 1) \qquad \qquad \text{f)} \ \lim_{x \to +\infty} \sqrt{x+5} - \sqrt{x-3} \qquad \qquad \text{g)} \ \lim_{x \to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2} \qquad \quad \text{h)} \ \lim_{x \to 0^+} \frac{x+2}{x^2 \ln x} = -\frac{1}{x^2 \ln x}$$

g)
$$\lim_{x \to 0} \frac{\sqrt[3]{1+x^2}-1}{x^2}$$

h)
$$\lim_{x \to 0^+} \frac{x+2}{x^2 \ln x}$$

i)
$$\lim_{x \to +\infty} 2x \ln(x + \sqrt{x})$$
 j) $\lim_{x \to +\infty} \frac{e^x - e^{x^2}}{x^2 - x}$ k) $\lim_{x \to 0} x \lfloor \frac{1}{x} \rfloor$ l) $\lim_{x \to 0} x \lfloor \frac{1}{x^2} \rfloor$

$$j) \lim_{x \to +\infty} \frac{e^x - e^{x^2}}{x^2 - x}$$

$$k) \lim_{x \to 0} x \lfloor \frac{1}{x} \rfloor$$

$$1) \lim_{x \to 0} x \lfloor \frac{1}{x^2} \rfloor$$

Remarque: la notation lim est abusive pour les limites qui n'existent pas.

Exercice nº 6

Soit $f(x) = \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$. Donner le domaine de définition de f. Est-il possible de prolonger f par continuité?

Exercice nº 7

Les fonctions suivantes sont-elles prolongeables par continuité sur les intervalles indiqués?

$$f_1(x) = \frac{\sin x}{x} \text{ sur } \mathbb{R}$$
 ; $f_2(x) = x^{(x^x)} \text{ sur } \mathbb{R}^+$; $f_3(x) = \frac{x^2}{e^x - 1} \text{ sur } \mathbb{R}$

2

Soit $f: x \longmapsto \begin{cases} 0 \text{ si } x \text{ est un nombre premier} \\ 1 \text{ sinon.} \end{cases}$. La fonction f admet-elle une limite en $+\infty$?

Exercice nº 9

Montrer qu'une fonction continue qui est nulle sur \mathbb{Q} est nulle sur \mathbb{R} .

Exercice no 10

- 1. Prouver que l'équation $e^x + x = 0$ admet une unique solution $\alpha \in \mathbb{R}$.
- 2. Programmer une fonction alpha_precision(epsilon) qui, étant donnée un réel $\varepsilon > 0$ renvoie une valeur approchée de α avec une précision ε .
- 3. Utiliser la fonction programmée à la question précédente pour fournir une valeur approchée à 10^{-6} de α .

Exercice no 11

Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ telle que |f| est constante. Montrer que f est constante. Ce résultat est-il toujours vrai si f est à valeurs complexes?

Exercice no 12

Soit f et g deux fonctions de $\mathcal{C}^0([0;1],\mathbb{R})$ telles que $f([0;1]) \subset g([0;1])$. Montrer que les courbes représentatives de f et de g se croisent.

Exercice no 13

Une voiture parcourt 100 km en 1h. Justifier qu'il existe au moins un quart d'heure pendant lequel la voiture a parcouru exactement 25 km.

3 Démontrer les résultats du cours

Exercice no 14

- 1. Montrer que si la fonction f a une limite finie en $a \in \mathbb{R}$ alors f est bornée au voisinage de a.
- 2. Montrer que toute fonction croissante et majorée admet une limite finie en $+\infty$.
- 3. Prouver que si f et g sont deux fonctions qui ont des limites finies en 3 alors f + g et $f \times g$ ont des limites finies en 3.

4 Plus difficile...

Exercice nº 15

La fonction $x \longmapsto \frac{x^{\lfloor x \rfloor}}{\lfloor x \rfloor^x}$ admet-elle une limite en $+\infty$.

Exercice no 16

Trouver toutes les fonctions de $C^0(\mathbb{R}, \mathbb{R})$ qui vérifient : $\forall x \in \mathbb{R}, f(x) = f(\frac{x}{2})$.

Exercice nº 17

Soit E l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles que : $\forall (x,y) \in \mathbb{R}^2$, $\left(f\left(\frac{x+y}{2}\right)\right)^2 \leq f(x)f(y)$. Montrer que E est stable par somme et par produit.

3

Remarque : ce dernier exercice ne porte pas sur la continuité.