Chapitre 12 - Dérivation - Exercices

1 Applications directes du cours

Exercice n°1

Dérivabilité.

1.

8.

Exercice n° 2

On considére la fonction f représentée ci-dessous. (Lorsque les valeurs lues semblent entiéres, on considére
qu’elles le sont).

a) Déterminer les domaines de définition et de
— dérivabilité de f.

g b) Lire f(0), f(—4), f'(=2) et f'(5).

4

. Etudier la dérivabilité de = — l

X

Etudier la dérivabilité des fonctions suivantes :

22siz>0 2siz<0 rzsix <0 . 22 —3siz<0
f(x)—{ 2Bsiz<0 » g(2) zsiz>0 3 hz) = sinz siz >0 i) 22sixz>0

Aprés avoir justifié de sa dérivabilité sur R, déterminer la fonction dérivée de x — (22 + 1)°52,

Soit a € R. Aprés avoir justifié que x — =% est définie et de classe € sur R**, déterminer sa dérivée
d’ordre n (n € N).

1
La fonction x — x> sin — peut-elle étre prolongée en une fonction de classe € sur R ?
T

1
La fonction x — x2 cos — peut-elle étre prolongée en une fonction de classe €' sur R ?
x

La fonction x — 2% peut-elle étre prolongée en une fonction dérivable sur R* ?

Applications de la dérivation.

1.

2.

3.

Déterminer les extrema de f(z) = 2% — 23 + 1 sur [—1;1].
Donner le DL1 de x — /x en 4. En déduire une valeur approchée de /3, 96.

Soit f € €3([0;1]) et qui vérifie £(0) = f/(0) = f(1) = f/(1) = 0. Prouver qu’il existe o €]0; 1] tel que
() =0.

Soit f une fonction définie et dérivable sur R qui vérifie f(3) = 5 et |f’| < 2. Donner un encadrement pour

f(0).

Prouver que, pour tout x > 0, on a : %-H <ln(z+1)—Inz < %

) aty e +eb
Prouver que, pour tous réels a et bona:e 2 < 5




2 Vrai ou faux sur ’ensemble du chapitre

f désigne une fonction, définie et dérivable sur Dy. a est un point intérieur de Dy (c’est-a-dire qu’il existe un
intervalle ouvert inclus dans Dy qui contient a).

a) Si f’ est de signe constant sur Dy alors f est monotone sur Dy.
Si f est monotone sur Dy alors f’ est de signe constant sur Dy.
Si f admet un extremum local en a alors f/(a) = 0.
Si f’(a) = 0 alors f admet un extremum local en a.

Le théoréme de Rolle est valable pour les fonctions réelles & valeurs complexes.

L’inégalité des accroissements finis est valable pour les fonctions réelles a valeurs complexes.
Il existe des fonctions convexes non dérivables.

)
)
)
)
f) Le théoréme des accroissements finis est valable pour les fonctions réelles a valeurs complexes.
)
)
) Il existe des fonctions convexes et concaves.
)

Si f est lipschitzienne sur I'intervalle I alors f est continue sur I.

3 Un peu plus dur

Exercice n° 3

Osiz=0
rsint siz#0

x

Etudier la dérivabilité de f(x) = {

Exercice n° 4

On considére la fonction f : x — /23 Arcsin(z).

a) Donner le domaine de définition de f.
b) Etudier la dérivabilité de f en 0.

¢) Pouvait-on aboutir & ce résultat par opérations ?

Exercice n°5

Soit la fonction définie sur R par f(z) = (z — 1)3 + 2.
a) Justifier existence d’une bijection réciproque f~1 dont on précisera le domaine de définition.
b) Etudier la dérivabilité de f~! sur R.

Exercice n° 6

1
Soit la fonction f(z) = 22 <1 + cos2(z)>.

1. Justifier qu’on peut prolonger f par continuité en 0 et qu’alors f admet un minimum en 0.

2. A laide de Geogebra, observer que f n’est ni localement décroissante a gauche en 0, ni localement croissante
a droite en 0.

Nous avons observé dans les exercices 4 & 7 :
e une fonction continue mais qui n’est dérivable ni a gauche, ni & droite, en un point ;

e une fonction dont la dérivabilité en un point n’est pas prédite par les formules de calcul sur les
dérivées (qui permettent de prouver simplement la dérivabilité mais pas la non-dérivabilité) ;

e une fonction dérivable et bijective dont la réciproque n’est pas dérivable partout a cause de points
d’annulation de la dérivée.
Géométriquement, si la courbe de f admet une tangente horizontale alors la courbe de f~! qui
est déduite de celle de f par symétrie orthogonale d’axe x = y admet une tangente verticale (ce
qui prouve la non-dérivabilité de f~! en ce point).

e Une fonction qui admet un minimum global en un point sans que la fonction soit localement
décroissante & gauche et croissante a droite en ce point.




Exercice n° 7

Calculer les dérivées n-iémes des fonctions :

cos ; sin ; f@)=WBz+1) ; g&)=2*1+2)" ; h(z)=cos(z)sin(x)

Exercice n° 8

2)—2
Soit f : R — R dérivable en 2. Déterminer lim2 M
T— xr —

Exercice n° 9

. L . 3
Etudier les variations de z + sin(z) — x 4 .

Exercice n° 10

Déterminer le minimum de x — 2 + 22 sur ]0; 1].

Exercice n°11

Prouver que Vx > 0, x <e” —1 < xe®.

Exercice n° 12

Soit k € N*, f € €*(R,R). Montrer que si f(z) = 0 admet k + 1 solutions alors il existe a € R tel que
7%)(a) = 0.

Exercice n° 13

Soit (a,b) € R?, n > 1 un entier et P,(z) = 2" + ax + b.
Prouver que P admet au maximum trois racines réelles.

Exercice n° 14

Prouver que V(z,y) € R?, |Arctan z — Arctan y| < |z — y|.

Exercice n° 15

Soit la suite u définie par ug =2 et Vn € N, uyqq = 1+ Sin(i). On note pour tout  # 0, f(x) = 1+ % sin(2).
1. Prouver que f(R*) est un intervalle qu’on notera I.

Justifier que I est stable par f, en déduire que u est bien définie.

Prouver que f admet un point fixe qu’on notera a.

Démontrer que Va € I, |f'(z)] < 3.

CUk LN

En déduire que u converge vers a.

Exercice n° 16
Soit n € N* et aq,...,a, des réels dont la somme est nulle.

Justifier qu’il existe un réel b €]0; 1] tel que Z kapb®~1 = 0.
k=1

Exercice n°17

Soit n > 2. Démontrer que Vz € [—1; 400, (1 +2)" > 1+ na.

4 Démontrer les résultats du cours et exercices théoriques

Exercice n° 18

Démontrer la formule de dérivation d’une composée. (On pourra utiliser une définition alternative de la déri-
vation qui a été vue en cours).



Exercice n° 19

Démontrer le Théoréme de la limite de la dérivée.

Exercice n° 20

Soit f, une fonction définie et dérivable sur un intervalle I. Supposons que f’ > 0 sur I.
Prouver que f est strictement croissante sur I.

Exercice n° 21

Généraliser le théoréme de Rolle aux fonctions définies et dérivables sur R qui ont la méme limite finie en —co
et en +oo.

Exercice n° 22

Soit n > 2. Montrer que la fonction f est convexe sur R si, et Seulement si, pour tous réels ay,...,a, et tous
nombres Ay, ..., A, de [0;1] telsqueZ)\ =lona: 2:)\faZ >fZ)\a,
i=1 i=1 i=1

5 Plus difficile...

Exercice n° 23

Soit f: [0;a] — R de classe €* telle que f(0) = 0.
2f(a) + af'(a)

Montrer qu'il existe ¢ €]0;a] tel que f'(c) = 3
a

Exercice n° 24

1. Prouver que f(x) = In(1 + %) est convexe sur R.

n n n n
2. Justifier que pour tous réels ay, ..., a, strictement positifs on a : 1 4+ (H ai> < (H(l + a¢)> .

i=1 i=1
3. En déduire que si z1,...,Zn,Y1,--.,Yn sont des réels strictement positifs, on a :
1 1 1
n n n n n n
(H $z> + (H yz> < (H(fﬂz + yz))
i=1 i=1 i=1

Exercice n° 25

: . . - a + .. _|_ a
Soit aq, ..., a, des réels strictement positifs. Prouver que : /a;...a, < ! Z.

Exercice n° 26

Soit a > 0, f et g deux fonctions continues sur [0;a], de classe €1 sur ]0;a], qui vérifient f(0) = g(0) = 0 et
telles que ¢ et ¢’ ne s’annulent pas sur ]0; a].

a) Soit  €]0;a]. Appliquer le théoréme de Rolle a t — f(x)g(t) — f(t)g(z).
!

b) En déduire que si lim (=) existe alors lim (z)

z—0 ¢g'(x z—0 g(x)

(Ce dernier résultat s’appelle Regle de I’'Hospital).

existe aussi et que ces limites sont égales.
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