Chapitre 13 - Espaces Vectoriels - Exercices

Exercice nº 1

VRAI ou FAUX sur l'ensemble du chapitre.

- a) \mathbb{R} est un \mathbb{C} -espace vectoriel.
- b) L'ensemble des polynômes de degré 3 est un sous-espace vectoriel de $\mathbb{K}[X]$.
- c) L'ensemble Π des fonctions vérifiant $\lim_{x \to +\infty} f(x) = 0$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{R}}$.
- d) L'ensemble des solutions réelles de y''=1 est un plan vectoriel de $\mathbb{R}^{\mathbb{R}}$
- e) Deux droites vectorielles distinctes d'un même espace vectoriel sont toujours en somme directe.
- f) L'intersection de deux plans vectoriels est une droite vectorielle.
- g) Si F est un sous-espace vectoriel de E alors $E \setminus F$ est supplémentaire de F.
- h) La famille (X, X + 1) est une base de $\mathbb{K}_1[X]$.
- i) Une famille de 3 polynômes de $\mathbb{K}_1[X]$ est nécessairement liée.
- j) L'ensemble des suites géométriques de raison 2 est une droite vectorielle de $\mathbb{R}^{\mathbb{N}}$.
- k) Une famille de polynômes qui n'est pas échelonnée en degrés est liée.

Applications directes du cours 1

Exercice nº 2

Les ensembles suivants sont-ils des sous-espaces vectoriels?

$$E = \{u \in \mathbb{R}^{\mathbb{N}}/u \text{ converge}\}$$

$$F = \{ u \in \mathbb{R}^{\mathbb{N}} / u \text{ diverge} \}$$

$$G = \{ y \in \mathcal{C}^2(\mathbb{R}, \mathbb{R}) / y'' = t^2 y \}$$
 $H = \{ (x; y) \in \mathbb{K}^2 / xy = 0 \}$

$$H = \{(x; y) \in \mathbb{K}^2 / xy = 0\}$$

Exercice no 3

Les familles suivantes sont-elles libres ou liées?

- 1. Dans $\mathbb{K}[X]$: $(3+X; X^2-X+1; 5X-X^2)$.
- 2. Dans $\mathbb{K}[X]$: $(3+X^2; X^2+X+1; 5X-X^2; X^2-7X)$.
- 3. Dans $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$: (Arctan; exp; $(x \mapsto x)$).
- 4. Dans $\mathcal{M}_2(\mathbb{R}): \left(\begin{pmatrix} 1 & 4 \\ 3 & 5 \end{pmatrix}; \begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}; \begin{pmatrix} -2 & 5 \\ 1 & 1 \end{pmatrix}\right).$

Exercice nº 4

Généralités sur les espaces vectoriels.

- 1. Soit E un espace vectoriel. Prouver que $\vec{0}$ est dans tout sous-espace vectoriel de E.
- 2. Donner un exemple d'une partie de $\mathbb{K}[X]$ qui ne soit pas un sous-espace vectoriel de $\mathbb{K}[X]$.
- 3. L'ensemble $\{f \in \mathbb{R}^{\mathbb{R}}/f(0) = 1\}$ est-il un espace vectoriel?
- 4. L'ensemble $\{f \in \mathbb{R}^{\mathbb{R}}/f(3) = 0\}$ est-il un espace vectoriel?
- 5. On travaille dans \mathbb{R}^3 . On considère l'ensemble $\Gamma = \{(x, y, z) \in \mathbb{R}^3 / x 2y + z = 0\}$. Prouver que Γ est un plan vectoriel de \mathbb{R}^3 .
- 6. On poursuit la question précédente. Trouver un supplémentaire de Γ dans \mathbb{R}^3 .

Exercice no 5

Familles (finies) de vecteurs.

- 1. Prouver qu'une famille de vecteurs contenant $\vec{0}$ est liée. Etudier la réciproque.
- 2. Soit E un \mathbb{K} -espace vectoriel, \mathcal{F} une famille finie (et non vide) de vecteurs de E. Prouver que \mathcal{F} est liée si, et seulement si, un des vecteurs de \mathcal{F} peut s'écrire comme combinaison linéaire des autres vecteurs de \mathcal{F} . On commencera par donner du sens à tous les termes employés.
- 3. Prouver que la famille $(X^3 + X^2; X^2 5X + 2; X + 1; 5)$ est une base de $\mathbb{K}_3[X]$.
- 4. Donner deux sous-espaces supplémentaires de $\mathbb{K}_3[X]$.
- 5. Montrer que $\mathbb{K}^3 = \{(x; 2x; 3x)/x \in \mathbb{K}\} \oplus \{(x+y; x-y; y)/(x; y) \in \mathbb{K}^2\}.$
- 6. Montrer que l'ensemble T des matrices triangulaires supérieures est un sous-espace de $\mathcal{M}_3(\mathbb{R})$. En donner une base puis un supplémentaire.
- 7. Prouver que $F = \{P \in \mathbb{K}[X]/P(0) = 0\}$ est un sous-espace vectoriel de $\mathbb{K}[X]$.
- 8. On poursuit la question précédente. Déterminer un supplémentaire de F.

2 Un peu plus dur

Exercice nº 6

Dans l'espace muni d'un repère $(O; \vec{i}; \vec{j}; \vec{k})$ donner une base puis un supplémentaire du plan P dont une équation cartésienne est 3x + 2y - z = 0.

(Peut-on calculer simplement des produits vectoriels ou des produits scalaires?)

Exercice nº 7

Soit $F = \{P \in \mathbb{K}[X]/(X-3)|P\}$. Après avoir justifié F est un sous-espace vectoriel de $\mathbb{K}_3[X]$, en proposer une base et un supplémentaire de F.

Exercice nº 8

Soit F l'ensemble des matrices 2×2 dont la somme des coefficients diagonaux est nulle.

Après avoir justifié que F est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$, en donner une base de puis un supplémentaire.

Exercice nº 9

Soit E un espace vectoriel, F et G deux sous-espaces vectoriels de E. Montrer que $F \cup G$ est un sous-espace de E si, et seulement si, $F \subset G$ ou $G \subset F$.

Exercice no 10

Soit E un espace vectoriel. On appelle **endomorphisme** de E une application $E \to E$ qui respecte les combinaisons linéaires.

- 1. Que signifie « qui respecte les combinaisons linéaires »?
- 2. Donner un exemple d'endomophisme de $\mathbb{K}[X]$.
- 3. On appelle **noyau** d'un endomophisme l'ensemble des vecteurs donc l'image est $\vec{0}$. Prouver que le noyau d'un endomophisme est un sous-espace vectoriel de E.
- 4. Quel est le noyau de l'exemple fourni en 2.?

Exercice nº 11

On travaille dans $\mathbb{R}^{\mathbb{R}}$, l'ensemble des fonctions réelles définies sur \mathbb{R} .

On considère les ensembles \mathcal{P} et \mathcal{I} des fonctions paires et impaires respectivement.

Prouver que \mathcal{P} et \mathcal{I} sont des sous-espaces vectoriels supplémentaires de $\mathbb{R}^{\mathbb{R}}$.

Exercice no 12

On travaille dans $\mathbb{R}^{\mathbb{R}}$ et on considère la famille $\mathcal{F} = (\cos, \sin)$.

- 1. Prouver que \mathcal{F} est libre.
- 2. Prouver que pour tout $p \in \mathbb{N}$ $x \mapsto \sin(x+p)$ est dans $\text{Vect}(\mathcal{F})$.
- 3. Pour $n \in \mathbb{N}$, soit \mathcal{G}_n la famille $(x \mapsto \sin(x+p))_{p \in [0,n]}$. Pour quelles valeurs de n la famille \mathcal{G}_n est-elle libre?

Exercice no 13

Pour tout réel a, soit f_a la fonction $x \mapsto e^{ax}$. Soit $n \in \mathbb{N}$ et $(a_i)_{i \in \llbracket 0,n \rrbracket} \in \mathbb{R}^{n+1}$ avec $a_0 < a_1 < \dots < a_n$. Prouver que $(f_{a_i})_{i \in \llbracket 0,n \rrbracket}$ est une famille libre.

Exercice no 14

Soit $n \in \mathbb{N}^*$, la famille $(x \mapsto \ln(kx))_{1 \le k \le n}$ est-elle libre?

Exercice nº 15

Prouver que $\mathbb{K}[X]$ n'admet pas de famille génératrice finie.

3 Démontrer les résultats du cours

Exercice no 16

On travaille dans un \mathbb{K} -espace vectoriel E et on désigne par \mathcal{F} une famille finie (non vide) de vecteurs.

- 1. Prouver que si \mathcal{F} est liée, toute sur-famille finie de \mathcal{F} est aussi liée.
- 2. Prouver que si \mathcal{F} est libre, toute sous-famille finie de \mathcal{F} est aussi libre.

Exercice nº 17

Prouver qu'une famille de polynômes non nuls qui est échelonnée en degrés est libré.

Exercice nº 18

Soit E un \mathbb{K} -espace vectoriel et $\mathcal{B} = (\vec{e_1}; \dots; \vec{e_n})$ une de ses bases. Soit $r \in [1; n-1]$. Prouver que $E = \text{Vect}((\vec{e_i})_{1 \leq i \leq r}) \oplus \text{Vect}((\vec{e_i})_{r < i \leq n})$.

4 Plus difficile...

Exercice nº 19

Soit E un espace vectoriel, \vec{x} , \vec{y} et \vec{z} trois vecteurs. On pose $\vec{a} = \vec{x} + \vec{y}$, $\vec{b} = \vec{y} + \vec{z}$ et $\vec{c} = \vec{z} + \vec{x}$. Prouver que $(\vec{x}, \vec{y}, \vec{z})$ est libre si, et seulement si, $(\vec{a}, \vec{b}, \vec{c})$ est libre.