Chapitre 3 - Fonctions - Exercices

Exercice nº 1

VRAI ou FAUX sur l'ensemble du chapitre.

- a) Une fonction peut être égale à sa dérivée.
- b) Deux polynômes différents ont deux dérivées différentes.
- c) Une fonction dont la dérivée est nulle est constante.
- d) On n'a jamais $f \circ g = g \circ f$.
- e) Soit une fonction f définie et dérivable sur $\mathcal{D}_f \subset \mathbb{R}$ et telle que : $\forall x \in \mathcal{D}_f, \ f'(x) > 0$. Alors f est strictement croissante sur \mathcal{D}_f .
- f) Il existe des fonctions qui sont paires et impaires.
- g) Il existe des fonctions qui sont périodiques et non bornées.

1 Applications directes du cours

Exercice nº 2

Les questions de cet exercice sont indépendantes.

- 1. Déterminer $\sin([0;1])$ et $\cos^{-1}(\mathbb{Z})$.
- 2. Déterminer le domaine de définition de $f(x) = \sqrt{\sin x}$.
- 3. Sans utiliser la dérivation, prouver que $x \mapsto \sqrt{x}$ est croissante sur \mathbb{R}^+ .
- 4. Montrer que $x \mapsto \sqrt{x}$ est dérivable sur \mathbb{R}^{+*} et déterminer sa fonction dérivée.
- 5. Retrouver les formules vues en terminale : $(\ln u)'$, $(e^u)'$, $(\sqrt{u})'$, $\frac{d}{dx}(\cos(ax+b)$. (On précisera les conditions pour u)
- 6. Calculer (à la main) : $\cos(\arccos(\frac{1}{2}))$; $\arccos(\cos(\frac{5\pi}{4}))$; $\arccos(\cos(-\frac{\pi}{6}))$.
- 7. Prouver que, lorsque les expressions sont bien définies, on a : $\alpha^{\beta+\gamma} = \alpha^{\beta}\alpha^{\gamma}$.
- 8. Soit a > 0. Faire l'étude complète de $x \mapsto a^x$.
- 9. Soit $b \in \mathbb{R}$. Faire l'étude complète de $x \mapsto x^b$.

Exercice no 3

Dériver les fonctions suivantes (après avoir donné leur domaine de définition) :

$$\begin{array}{c|cccc} f(t) = \sqrt{t^2 - 3t + 1} & g(t) = \ln((2t - 1)(t + 7)) & h(t) = t^2 \ln t \\ i(x) = (2x + 1)^9 & j(U) = \ln(U^3 - 5U - 4) & k(x) = (\tan x)^2 \end{array}$$

Pour s'entraîner en autonomie : fiche 9 du Cahier de Calcul.

2 Un peu plus dur

Exercice nº 4

Calculer $A = \sin\left(\arcsin\left(\frac{1}{3}\right) - \arcsin\left(\frac{1}{4}\right)\right)$ et $B = \cos\left(\arccos\left(\frac{1}{3}\right) + \arccos\left(\frac{1}{4}\right)\right)$.

Exercice nº 5

Résoudre les équations et inéquations suivantes :

Exercice nº 6

Prouver les formules pour les dérivées de Arcsin et Arctan.

Exercice nº 7

Les fonctions **cosinus et sinus hyperboliques** sont définies par $ch(x) = \frac{e^x + e^{-x}}{2}$ et $sh(x) = \frac{e^x - e^{-x}}{2}$.

- 1. Faire l'étude complète de sh et de ch.
- 2. Montrer que : $\forall x \in \mathbb{R}, \ \operatorname{ch}^2(x) \operatorname{sh}^2(x) = 1$

ch et sh font partie des fonctions de référence à connaître.

Exercice nº 8

L'objectif de cet exercice est de transformer les expressions du type $A\cos t + B\sin t$ en expressions du type $C\cos(t+\phi)$. Cette compétence est importante et doit être bien comprise.

- 1. Un exemple : $3\cos t + 4\sin t$.
 - (a) Justifier qu'il existe un réel ϕ tel que $\cos \phi = \frac{3}{5}$ et $\sin \phi = \frac{4}{5}$.
 - (b) Prouver qu'on a alors : $3\cos t + 4\sin t = 5(\cos t\cos\phi + \sin t\sin\phi)$. Conclure.
- 2. Autre exemple : en procédant de façon analogue à la question 1. écrire $5\cos t \sin t$ sous la forme $C\cos(t+\phi)$
- 3. Cas général.

Exercice nº 9

- a) Prouver que la fonction $f(x) = \arccos x + \arcsin x$ est constante sur [-1; 1].
- b) Prouver que $\forall x \in [-1; 1], \arccos x = \frac{\pi}{2} \arcsin x$.

Exercice no 10

- a) Prouver que $\forall x \in \mathbb{R}^{+*}$, $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$.
- b) Trouver un résultat similaire sur \mathbb{R}^{-*} .

3 Plus difficile...

Exercice nº 11

Résoudre l'équation $x^2 + 3x - 7 + \frac{6}{\sqrt{x^2 + 3x}} = 0$.

Exercice nº 12

On considère le polynôme $P(x) = 8x^3 - 6x - 1$.

- a) Etudier la fonction P.
- b) Prouver que P a trois racines, et que ces racines sont dans [-1;1]. On les nomme : $x_1 < x_2 < x_3$. (A ce stade de l'exercice, vous ne pouvez pas trouver les valeurs de ces racines)
- c) Exprimer, pour $\theta \in \mathbb{R}$, $\cos(3\theta)$ en fonction de $\cos \theta$.
- d) En déduire : $P(\cos \theta) = 0 \iff 2\cos(3\theta) 1 = 0$.
- e) En déduire x_1, x_2 et x_3 .

Exercice nº 13

Montrer que pour tout réel strictement positif k, l'équation $2^x + 3^x = k$ admet une unique solution.