Chapitre 7 - Suites - Exercices

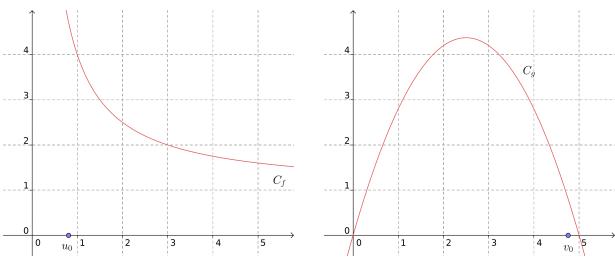
Applications directes du cours 1

Exercice nº 1

- 1. Soit $(u_n)_{n\in\mathbb{N}}$ une suite. Comment noter le 10è terme de u? La somme des 100 premiers termes de u? La somme des 1000 premiers termes d'indices pairs de u?
- 2. Soit la suite définie par : $\left\{ \begin{array}{rcl} u_0 & = & 1 \\ u_{n+1} & = & \frac{u_n}{u_n+2} \end{array} \right. \text{ Exprimer de façon explicite } u_n \text{ en fonction de } n.$
- 3. Soit la suite u définie par $u_0 = 3$ et, pour tout $n \in \mathbb{N}$ par $u_{n+1} = -2u_n + 1$. Déterminer une expression de u_n en fonction de n.
- 4. Déterminer la suite v qui est solution de $\begin{cases} v_0 = 2, \ v_1 = 1 \\ \forall n \in \mathbb{N}, \ v_{n+2} = 2v_{n+1} v_n \end{cases}$ 5. En utilisant la définition, démontrer que : $\frac{n^2 + n 2}{2n^2 4} \underset{n \to +\infty}{\longrightarrow} \frac{1}{2}$ et que : $n^2 n^3 \underset{n \to +\infty}{\longrightarrow} -\infty$.

Exercice nº 2

Sur les deux figures ci-dessous, représenter sur l'axe des abscisses les premiers termes des suites u et v qui vérifient, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ et $v_{n+1} = g(v_n)$.



Exercice nº 3

Etudier les variations des suites suivantes :

$$\left(\frac{3-n^2}{n+2}\right)_{n\in\mathbb{N}} \quad ; \quad \left(\frac{3^n}{2\times 5^{n-1}}\right)_{n\in\mathbb{N}^*} \quad ; \quad (\cos n)_{n\in\mathbb{N}} \quad ; \quad \left(\frac{4^n}{n^2}\right)_{n\in\mathbb{N}^*} \quad ; \quad \left(\frac{n!}{n^2}\right)_{n\in\mathbb{N}^*}$$

$$\left\{\begin{array}{l} x_0=0 \\ \forall n\in\mathbb{N}, \ x_{n+1}=\sqrt{4+x_n^2} \end{array} \right. \quad ; \quad \left\{\begin{array}{l} z_0=5 \\ \forall n\in\mathbb{N}, \ z_{n+1}=\frac{z_n^2}{1+z_n} \end{array} \right.$$

Exercice nº 4

Étudier les comportements asymptotiques des suites suivantes :

$$\left(\sqrt{n^2+n}-n\right)_{n\in\mathbb{N}}\quad;\quad \left(\sqrt[n]{n}\right)_{n\in\mathbb{N}^*}\quad;\quad \left(\frac{n^2+n\cos n}{n+1}\right)_{n\in\mathbb{N}}\quad;\quad \left(\frac{2+(-1)^nn}{n+2}\right)_{n\in\mathbb{N}}$$

1

2 Vrai ou faux sur l'ensemble du chapitre

- a) Une suite bornée est convergente.
- b) Une suite stationnaire est bornée.
- c) Soit $x \in \mathbb{R}$, $(x_n)_{n \in \mathbb{N}}$ son approximation décimale. $(x_n)_{n \in \mathbb{N}}$ est monotone.
- d) Soit f une fonction croissante. Toute suite u vérifiant $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ est croissante.
- e) Soit $u \in \mathbb{R}^{\mathbb{N}}$. Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont croissantes, alors u est croissante.
- f) La suite $(2n^2)_{n\in\mathbb{N}}$ est extraite de $(n^2)_{n\in\mathbb{N}}$.
- g) Une suite géométrique décroissante à une raison positive.
- h) Si u est une suite telle que $\forall n \in \mathbb{N}, \ \frac{u_n}{u_{n+1}} < 1$ alors u est monotone.
- i) Si u et v ont la même limite (finie ou infinie) alors uv a une limite.
- j) Si u et v sont des suites qui convergent avec u < v alors $\lim u < \lim v$.
- k) Si u est une suite qui diverge alors ses suites extraites divergent.

3 Un peu plus dur

Exercice nº 5

Dans les situations suivantes, il faut trouver (si c'est possible) des exemples de suites u et v satisfaisant les conditions données.

a)
$$u \to +\infty$$
, $v \to +\infty$ et $\frac{u}{v} \to 0$

a)
$$u \to +\infty$$
, $v \to +\infty$ et $\frac{u}{v} \to 0$ b) $u \to +\infty$, $v \to +\infty$ et $\frac{u}{v} \to 2$

c)
$$u \to +\infty$$
, $v \to +\infty$ et $\frac{u}{v} \to -\infty$

c)
$$u \to +\infty$$
, $v \to +\infty$ et $\frac{u}{v} \to -\infty$ d) $u \to +\infty$, $v \to +\infty$ et $\frac{u}{v} \to +\infty$

e)
$$u \to +\infty$$
, $v \to -\infty$ et $\frac{u}{v} \to 0$

e)
$$u \to +\infty$$
, $v \to -\infty$ et $\frac{u}{v} \to 5$ f) $u \to +\infty$, $v \to +\infty$ et $\frac{u}{v}$ n'a pas de limite.

Exercice nº 6

On considère la suite définie par : $\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{u_n + 2} \end{cases}$

- a) On note $f: x \mapsto \sqrt{x+2}$. Prouver que [1; 2] est stable par f. Qu'en déduire pour la suite u?
- b) Prouver que u est strictement croissante, puis que u converge.
- c) Déterminer la limite de u.

Exercice nº 7

Etudier les limites éventuelles des suites suivantes :

$$(n\sqrt{n})_{n\in\mathbb{N}}$$
 ; $(n^4 - n^2 - 1)_{n\in\mathbb{N}}$; $(n\cos(\pi n))_{n\in\mathbb{N}}$; $((0.3)^n - \pi^n)_{n\in\mathbb{N}}$

$$\left(\frac{3n+2^n}{2^n}\right)_{n\in\mathbb{N}}\quad;\quad \left(\frac{\lfloor n\rfloor}{n}\right)_{n\in\mathbb{N}^*}\quad;\quad \left(\frac{\lfloor\sqrt{2n}\rfloor}{\sqrt{n}}\right)_{n\in\mathbb{N}^*}\quad;\quad \left(\frac{n^3}{n!}\right)_{n\in\mathbb{N}^*}$$

2

Exercice nº 8

On considère la suite définie par $\forall n \in \mathbb{N}^*, S_n = \sum_{k=0}^{\infty} \frac{1}{(k+1)^2}$.

- 1. Etudier les variations de S. Que peut-on en déduire sur le comportement asymptotique de S?
- 2. Justifier que $\forall k \in \mathbb{N}^*, \ 0 < \frac{1}{(k+1)^2} < \int_{\iota}^{k+1} \frac{1}{x^2} \mathrm{d}x$ (Faire une figure)
- 3. En conclure que S converge.

Exercice nº 9

Soient $a_0 < b_0$ deux réels. On définit par récurrence les suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ par :

$$\begin{cases} a_{n+1} &= \frac{2a_n + b_n}{3} \\ b_{n+1} &= \frac{a_n + 2b_n}{3} \end{cases}$$

- 1. Prouver que $(a_n b_n)_{n \in \mathbb{N}}$ est géométrique, en déduire l'expression de $a_n b_n$ en fonction de n.
- 2. Prouver que $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont adjacentes.
- 3. En calculant $a_n + b_n$, trouver leur limite commune

Exercice nº 10

Démontrer que les suites (u_n) et (v_n) définies sur \mathbb{N} par $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n!}$ sont adjacentes puis utiliser Python pour émettre une conjecture sur la limite commune de ces suites.

4 Démontrer les résultats du cours

Exercice nº 11

Démontrer que si une suite admet une limite, alors cette limite est unique.

Exercice nº 12

Démontrer qu'une suite convergente est bornée.

Exercice nº 13

Démontrer que si la suite u admet une limite $\ell \in \mathbb{R}$ alors toute suite extraite de u admet cette limite.

Exercice nº 14

Soit $x \in \mathbb{R}$.

- 1. Donner les expressions des approximations décimales de x par défaut et par excès.
- 2. Prouver que x est la limite d'une suite de rationnels.

5 Plus difficile...

Exercice nº 15

Prouver sup $\{\sin(n) / n \in \mathbb{N}\} = 1$.

Exercice nº 16

Pour n > 1, soit la fonction $f_n(x) = \left(\sum_{k=1}^n x^k\right) - 1$.

- 1. Prouver que $f_n(x) = 0$ admet une unique solution sur \mathbb{R}^+ . On la note a_n .
- 2. Prouver que la suite $(a_n)_{n\in\mathbb{N}}$ converge vers un certain réel $\ell\in[0;1[$.
- 3. Prouver que $\forall n \in \mathbb{N}, \ a_n < \frac{2}{3}$.
- 4. Déterminer ℓ .

Exercice nº 17

Que dire du comportement asymptotique d'une suite de complexe z vérifiant : $\forall n \in \mathbb{N}, \ z_{n+1} = \frac{z_n + |z_n|}{2}$?

3