Chapitre 9 - Matrices - Exercices.

Dans toute cette fiche, n, p et q désignent des entiers naturels non nuls.

1 Applications directes du cours

Exercice nº 1

Notations, calcul matriciel.

- 1. Soit p un entier naturel non nul. On considère la matrice M de taille (3,p) telle que :
 - sur la première ligne : les coefficients sont égaux à à l'indice de leur colonne ;
 - sur la 2è ligne : les coefficients valent alternativement 1 puis -1;
 - sur la 3è ligne : les coefficients sont égaux à la somme des coefficients situés au-dessus dans la même colonne

On décide d'appeler les coefficients de $M: m_{i,j}$.

Exprimer $m_{i,j}$ en fonction de i et j.

2. Calculer
$$M = 3I_3 - 2 \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

À l'aide du symbole de Kronecker, donner une expression pour le coefficient $m_{i,j}$ en fonction de i et de j.

- 3. On considère $A \in \mathcal{M}_3(\mathbb{R})$ telle que $\forall (i,j) \in [1;3] \times [1;3], \ a_{i,j} = 2^{\delta_{i,j}}$. Ecrire A.
- $4. \text{ Effectuer les calculs suivants}: \left(\begin{array}{ccc} 2 & -1 & 0 & 3 \\ 4 & -5 & 6 & 1 \end{array}\right). \left(\begin{array}{c} 3 \\ 1 \\ 10 \\ 5 \end{array}\right) \text{ et } \left(\begin{array}{ccc} -4 & 1 & 6 \\ 8 & 0 & -3 \\ 5 & -2 & -2 \\ 1 & 0 & 3 \end{array}\right). \left(\begin{array}{c} -2 \\ 6 \\ 2 \end{array}\right).$
- 5. Soit A une matrice $n \times p$. Existe-t-il une colonne X (indépendante de A) telle que :
 - AX soit une colonne égale à la somme de toutes les colonnes d'indice pairs de A?
 - chaque coefficient de AX soit la moyenne des coefficients de la ligne de A correspondante?
 - chaque coefficient de AX soit le maximum des coefficients de la ligne de A correspondante?
- 6. Effectuer les produits de matrices :

$$\left(\begin{array}{ccc} 2 & 1 \\ 3 & 2 \end{array} \right) \times \left(\begin{array}{ccc} 1 & -1 \\ 1 & 2 \end{array} \right) \quad \left(\begin{array}{ccc} 1 & 2 & 0 \\ 3 & 1 & 4 \end{array} \right) \times \left(\begin{array}{ccc} -1 & -1 & 0 \\ 1 & 4 & -1 \\ 2 & 1 & 2 \end{array} \right) \quad \left(\begin{array}{ccc} a & b & c \\ c & b & a \\ 1 & 1 & 1 \end{array} \right) \times \left(\begin{array}{ccc} 1 & a & c \\ 1 & b & b \\ 1 & c & a \end{array} \right)$$

Pour continuer à vous entraîner sur le calcul matriciel : fiche 26 du Cahier de Calcul.

Exercice nº 2

Opérations sur les lignes et les colonnes. Systèmes linéaires.

- 1. Trouver une suite d'opérations élémentaires sur les lignes qui prouve que $A = \begin{pmatrix} 3 & 2 \\ 4 & 1 \end{pmatrix}$ est équivalente à I_2 . En déduire une succession de matrices d'opérations élémentaires $Z_1 \dots Z_k$ telles que $Z_k \dots Z_1 A = I_2$. Que représente la matrice $Z_k \dots Z_1$ pour A?
- 2. Trouver une suite d'opérations élémentaires sur les lignes qui prouve que $A = \begin{pmatrix} 2 & 7 \\ 6 & 0 \\ 5 & -2 \end{pmatrix}$ est équivalente
 - à $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$. En déduire l'existence d'une colonne B telle que le système AX = B soit incompatible. Donner un exemple d'une telle colonne B.
- 3. Trouver une suite d'opérations élémentaires sur les lignes qui prouve que $A = \begin{pmatrix} 8 & -1 & 3 \\ 5 & 2 & 6 \end{pmatrix}$ est équivalente à $\begin{pmatrix} 1 & 0 & \alpha \\ 0 & 1 & \beta \end{pmatrix}$ avec α et β des réels à déterminer. En déduire le nombre de solution de AX = B pour toute colonne B.

4. Résoudre les systèmes (S_1) : $\begin{cases} x + y + z = 15 \\ x - y + 2z = 5 \end{cases}$ et (S_2) : $\begin{cases} 3x - 4y + z = 4 \\ 2x + y - z = 8 \\ 5x + z = 3 \end{cases}$.

Pour continuer à vous entraîner sur le calcul matriciel : fiche 15 du Cahier de Calcul.

Exercice nº 3

Inversibilité des matrices.

- 1. Justifier que $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ est inversible et donner son inverse.
- 2. Déterminer l'inverse de $A = \begin{pmatrix} 2 & 1 & 3 \\ -3 & 0 & 5 \\ 1 & 1 & 1 \end{pmatrix}$.

2 Vrai ou faux sur l'ensemble du chapitre

A, B et C désignent des matrices.

- a) Multiplier par une matrice nulle ne donne pas nécessairement une matrice nulle.
- b) Si AB est une matrice carrée alors A et B sont également carrées.
- c) Si B et C sont de même taille et que AB = AC alors B = C.
- d) Deux matrices triangulaires supérieures (de même taille) commutent.
- e) Si A est inversible alors 2A est inversible.
- f) Si A est inversible alors A^p est inversible pour tout $p \in \mathbb{N}^*$.
- g) Une matrice triangulaire supérieure dont le produit des termes diagonaux est nul n'est pas inversible.
- h) Un système linéaire peut avoir exactement une solution.
- i) Un système linéaire peut avoir exactement deux solutions.
- j) Un système linéaire ayant plus d'inconnues que d'équations ne peut avoir une unique solution.

3 Un peu plus dur

Exercice nº 4

Soit deux matrices élémentaires $E_{i,j}$ et $E_{k,l}$ de la base canonique de $\mathcal{M}_n(\mathbb{K})$. Que vaut $E_{i,j} \times E_{k,l}$?

Exercice nº 5

Soit
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 et $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. Déterminer des expressions de A^n et B^n en fonction de $n \in \mathbb{N}^*$.

Exercice nº 6

Soit
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
. Calculer $A^3 - A$. En déduire que A est inversible puis déterminer A^{-1} .

Exercice nº 7

On considère les matrices :
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ -2 & 1 & -2 \end{pmatrix}, \quad \text{et } D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

L'objectif de cet exercice est de trouver une expression pour A^n $(n \in \mathbb{N}^*)$.

- 1. Déterminer P^{-1} , la matrice inverse de P.
- 2. Calculer $P^{-1}AP$.
- 3. Pour $n \in \mathbb{N}^*$, calculer D^n .
- 4. En déduire une expression pour A^n $(n \in \mathbb{N}^*)$.

Exercice nº 8

On travaille dans l'espace muni d'un repère orthonormé. Soit A(3; -2; 0).

- a) En utilisant le produit scalaire, déterminer une équation cartésienne du plan passant par A et orthogonal à
- b) Résoudre le système : $\begin{cases} 3x + 5y 3z + 1 = 0 \\ x 2y + z 4 = 0 \end{cases}$ puis interpréter géométriquement le résultat trouvé.

Exercice nº 9

Soit
$$a \in \mathbb{R}$$
. Résoudre le système :
$$\begin{cases} 2x + y - 3z = a \\ 3x + 2y + z = a+3 \\ 7x + 4y - 5z = 2a+5 \end{cases} .$$

Exercice nº 10

Pour $\theta \in \mathbb{R}$ on considère la matrice $A(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.

- 1. (a) Soit $(\theta, \varphi) \in \mathbb{R}^2$. Calculer $A(\theta)A(\varphi)$.
 - (b) Que vaut $(A(\theta))^n$ pour $n \ge 1$?
 - (c) $A(\theta)$ est-elle inversible?
- 2. On travaille dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) .

Les vecteurs, exprimés dans la base (\vec{i}, \vec{j}) , sont réprésentés en colonnes; on identifie donc l'ensemble \overrightarrow{P} des vecteurs du plan à l'ensemble des colonnes à deux lignes.

Soit l'application
$$f_{\theta}: \left\{ \begin{array}{c} \overrightarrow{P} \longrightarrow \overrightarrow{P} \\ \overrightarrow{u} \longmapsto A(\theta)\overrightarrow{u} \end{array} \right.$$

Soit l'application $f_{\theta}: \left\{ \begin{array}{c} \overrightarrow{P} \longrightarrow \overrightarrow{P} \\ \overrightarrow{u} \longmapsto A(\theta)\overrightarrow{u} \end{array} \right.$ (On dit que f_{θ} est l'application linéaire canoniquement associée à $A(\theta)$).

- (a) Quelles sont les images de \vec{i} et \vec{j} par f_{θ} .
- (b) Justifier que f_{θ} est linéaire.
- (c) Sur une figure, représenter $\vec{i}, \vec{j}, f_{\theta}(\vec{i})$ et $f_{\theta}(\vec{j})$, puis interpréter géométriquement l'action de f_{θ} sur les vecteurs du plan.

Plus difficile... 4

Exercice nº 11

Soit $(a;b;c) \in \mathbb{R}^3$. Combien existe-t-il de polynômes P de degré 2 qui vérifient P(1) = a, P(2) = b et P(3) = c?

Exercice nº 12

Définition: Soit A une matrice.

On appelle **noyau** de A, l'ensemble des colonnes X telles que AX est la colonne nulle.

- 1. Le noyau d'une matrice peut-il être vide?
- 2. Prouver que le noyau d'une matrice est stable par combinaison linéaire.
- 3. Déterminer le noyau de $A = \begin{pmatrix} 2 & -3 & 2 \\ 5 & -2 & 4 \\ 1 & 4 & 0 \end{pmatrix}$.
- 4. Donner une condition nécessaire et suffisante pour que le noyau soit réduit à la colonne nulle.

3

Exercice no 13

Soit
$$n \ge 3$$
. Résoudre le système :
$$\begin{cases} x_1 + x_2 & = 0 \\ x_1 + x_2 + x_3 & = 0 \\ & \ddots & \\ & x_{n-2} + x_{n-1} + x_n = 0 \\ & x_{n-1} + x_n = 0 \end{cases}$$

Exercice nº 14

Soit $\in \mathbb{N}^*$. Prouver que toute matrice de $\mathcal{M}_n(\mathbb{K})$ s'écrit de façon unique comme somme d'une matrice symétrique et d'une matrice antisymétrique.

Exercice nº 15

(D'après Banque PT)

On appelle **trace** d'une matrice carrée
$$A$$
 la somme de ses éléments diagonaux; on note tr A .

Par exemple, $tr\begin{pmatrix} 1 & 0 & 9 \\ 1 & 2 & 1 \\ 3 & 7 & 0 \end{pmatrix} = 3$. Pour simplifier les choses, on ne place dans $\mathcal{M}_n(\mathbb{K})$ avec $n = 3$ (il est conseillé

d'essayer, dans un second temps, de réfléchir pour n>0 quelconque).

- 1. Soit A et B deux matrices carrées de même taille. Prouver que tr(AB) = tr(BA).
- 2. Prouver que la trace est linéaire.
- 3. S'il en existe, trouver des matrices A et B de $\mathcal{M}_3(\mathbb{R})$ telles que $AB BA = I_3$.