Chapitre 7 - Compléments sur les complexes - Exercices

Vrai ou Faux?

- a) Tout complexe non nul s'écrit de façon unique $re^{i\theta}$ avec $-\pi < \theta \le \pi$.
- b) Soit z un complexe non nul. Arg $z = \frac{\text{Im}z}{\text{Re}z}$
- c) Un polynôme du second degré dont les coefficients sont réels a des racines réelles.
- d) Un polynôme du second degré dont les coefficients sont des complexes non réels a des racines complexes non réelles.
- e) Tout complexe admet deux racines carrées.
- f) Soit $n \in \mathbb{N}^*$. Il existe exactement n racines n-ièmes de l'unité.
- g) Soit $n \in \mathbb{N}^*$. La somme des racines n-ièmes de l'unité est nulle.
- h) Soit $n \in \mathbb{N}^*$, ω une racine n-ième de l'unité. $\overline{\omega}$ est aussi une racine n-ième de l'unité.
- i) Soit $n \in \mathbb{N}^*$, ω une racine n-ième de l'unité. $-\omega$ est aussi une racine n-ième de l'unité.
- j) Dans le plan complexe $z \mapsto iz$ correspond à une rotation.

1 Nombres complexes et trigonométrie

Exercice nº 1

Soit $t \in [0; 2\pi]$. Donner le module et un argument de $1 + e^{it}$. Factoriser.

Exercice nº 2

Pour
$$n \in \mathbb{N}$$
 et $x \in \mathbb{R}$, calculer $A_n = \sum_{k=0}^n \binom{n}{k} \cos(kx)$.

Faire apparaître exp, utiliser la formule du binôme puis factoriser.

Exercice nº 3

Résoudre l'équation différentielle $y' - 5y = \cos 4x \sin x$. Utiliser l'exp complexe.

Exercice nº 4

Donner une primitive de $x \longmapsto e^{2x} \cos x$.

Utiliser l'exp complexe.

2 Forme exponentielle d'un complexe

Exercice nº 5

Résoudre dans \mathbb{C} l'équation $z^3 = 4\overline{z}$.

Quelle forme utiliser?

Exercice nº 6

Soit $\varphi \in \mathbb{R}$. Résoudre dans \mathbb{C} l'équation $z^6 - 2z^3 \cos \varphi + 1 = 0$. Faire un changement de variable.

Exercice nº 7

Soit a,b,c trois complexes (non nuls) de même module. Montrer que $\frac{(a+b)(b+c)(c+a)}{abc}$ est réel. Quelle forme utiliser? Factoriser.

Exercice nº 8

Résoudre dans \mathbb{C} les équations $e^z = -2$; $e^z + e^{-z} = 1$ et $e^z + 2e^{-z} = i$.

Attention au nombre de solutions. Se ramener à des équations du second degré pour les 2 dernières.

Exercice nº 9

Soit $n \leq 2$, un entier, soit \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité. Que vaut $\prod_{\omega \in \mathbb{U}_n} \omega$?

Utiliser l'expression des racines n-ièmes de 1.

3 Nombres complexes et géométrie

Exercice no 10

On travaille dans le plan complexe. Soit A(a) et B(b) deux points distincts. Quelles sont les affixes c possibles pour que ABC soit rectangle et isocèle en C(c)?

Faire une figure. Formuler en terme de transformation géométrique.

Exercice no 11

On travaille dans le plan complexe. Soit, pour tout entier naturel n, les points $A_n(e^{i\frac{n\pi}{4}})$. On construit alors, la famille de points $(M_n)_{n\in\mathbb{N}}$ de la façon suivante : $M_0=A_0$ et, pour tout $n\in\mathbb{N}$, M_{n+1} est le projeté orthogonal de M_n sur la droite (OA_{n+1}) .

Déterminer l'affixe complexe de M_n en fonction de $n \in \mathbb{N}$.

Faire une figure.

4 Plus difficile

Exercice nº 12

Soit n un entier naturel non nul, x un réel tel que $\frac{x}{2}$ n'est pas congru à 0 modulo π . Démontrer que :

$$\sum_{k=0}^{n} \cos(kx) = \frac{\sin\frac{n+1}{2}x\cos\frac{n}{2}x}{\sin\frac{x}{2}}.$$

Exercice nº 13

Pour
$$n \in \mathbb{N}$$
, soit $A_n = \sum_{k=0}^n \binom{n}{2k} (-1)^k 2^k$.

Prouver que, pour tout $n \in \mathbb{N}$, $A_n = \frac{1}{2} \left((1 + i\sqrt{2})^n + (1 - i\sqrt{2})^n \right)$.

Exercice no 14

Soit n un entier naturel non nul, on note \mathbb{U}_n l'ensemble des racines n-ièmes de 1. Les deux questions peuvent être traitées dans l'ordre de votre choix.

- 1. Calculer la somme $\sum_{z \in \mathbb{U}_n} (1+z)^n$.
- 2. Vérifier le résultat trouvé à la question précédente (ou conjecturez ce qu'il faut trouver si vous ne l'avez pas traitée) à l'aide de Pyhton.

2

Exercice no 15

Soit $\theta \in]-\frac{\pi}{2}; \frac{\pi}{2}[$. On pose $x = \tan \frac{\theta}{2}$.

1. Prouver que $e^{i\theta} = \frac{1 + ix}{1 - ix}$.

- 2. En déduire $\cos\theta$ et $\sin\theta$ en fonction de x.
- 3. Soit $t \in]-\pi;\pi[$. Calculer l'intégrale $\int_0^t \frac{\mathrm{d}\theta}{\cos\theta}$.